Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Tectonic history of Europa: Coupling between internal evolution and surface stresses


A stress history in the ice shell of Europa is presented. Europa’s surface is ubiquitous in extensional tectonic features such as banded terrains. These surface features suggest that the surface may have been fractured and extended due to tensional stress, and various origins for such stresses have been proposed. We have focused on the solidification of the liquid water layer and the accompanying volume change as one of the dominant sources for such stresses. To estimate the stress state in the ice shell, we first performed numerical simulations of the thermal history. Based on the resulting structural evolution, we calculated stresses in the viscoelastic ice shell due to the solidification of the liquid layer. Europa’s liquid layer solidifies slowly and may partially survive at present, and its solidification induces sufficient tensional stress to drive extensional tectonic activity. Consequently, we propose the tectonic scenario that the volume change due to phase change develops the basic amplitude of the stress, while tidal forces work as a trigger to fracture the surface.


  1. Abe, Y., Thermal evolution and chemical differentiation of the terrestrial magma ocean, in Evolution of the Earth and Planets, edited by E. Takahashi, R. Jeanloz, and D. Rubie, 159 pp., American Geophysical Union, Washington DC, 1993.

  2. Anderson, J. D., G. Schubert, R. A. Jacobson, E. L. Lau, W. B. Moore, and W. L. Sjogren, Europa’s differentiated internal structure: Inferences from four Galileo encounters, Science, 281, 2019–2022, 1998.

  3. Davaille, A. and C. Jaupart, Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle, J. Geophys. Res., 99, 19853–19866, 1994.

  4. Geissler, P. E., R. Greenberg, G. Hoppa, P. Helfenstein, A. McEwen, R. T. Pappalardo, B. R. Tufts, M. Ockert-Bell, R. Sullivan, R. Greeley, M. J. S. Belton, T. Denk, B. Clark, J. Burns, J. Veverka, and the Galileo Imaging Team, Evidence for non-synchronous rotation of Europa. Nature, 391, 368–370, 1998.

  5. Greenberg, R., The evil twin of Agenor; Tectonic convergence on Europa, Icarus, 167, 313–319, 2004.

  6. Greenberg, R. and S. J. Weidenschilling, How fast do Galilean satellites spin?, Icarus, 58, 186–196, 1984.

  7. Greenberg, R., P. Geissler, G. V. Hoppa, B. R. Tufts, D. D. Durda, R. Pappalardo, J. W. Head, R. Greeley, R. Sullivan, and M. H. Carr, Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features, Icarus, 135, 64–78, 1998.

  8. Gold, L. W., Engineering properties of fresh-water ice, J. Glaciology, 19, 197–223, 1977.

  9. Goldsby, D. L. and D. L. Kohlstedt, Superplastic deformation of ice: Experimental observations, J. Geophys. Res., 106, 11017–11030, 2001.

  10. Helfenstein, P. and E. M. Parmentier, Patterns of fracture and tidal stresses due to nonsynchronous rotation: Implications for fracturing on Europa, Icarus, 61, 175–184, 1985.

  11. Hiller, J. and S. W. Squyres, Thermal stress tectonics on the satellites of Saturn and Uranus, J. Geophys. Res., 96, 15665–15674, 1991.

  12. Hobbs, P. V., Ice Physics, Oxford University Press, London, 1974.

  13. Honda, S., Local Rayleigh and Nusselt numbers for cartesian convection with temperature-dependent viscosity, Geophys. Res. Lett., 23, 2445–2448, 1996.

  14. Hoppa, G. V., B. R. Tufts, R. Greenberg, T. A. Hurford, D. P. O’Brien, and P. E. Geissler, Europa’s rate of rotation derived from the tectonic sequence in the Astypalaea region, Icarus, 153, 208–213, 2001.

  15. Hussmann, H., T. Spohn, and K. Wieczerkowski, Thermal equilibrium states of Europa’s ice shell: Implications for internal ocean thickness and surface heat flow, Icarus, 156, 143–151, 2002.

  16. Karato, S., M. S. Peterson, and J. D. FitzGerald, Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151–8176, 1986.

  17. Khurana, K. K., M. G. Kivelson, D. J. Stevenson, G. Schubert, C. T. Russell, R. J. Walker, and C. Polanskey, Induced magnetic field as evidence for subsurface oceans in Europa and Callisto, Nature, 395, 777–780, 1998.

  18. Kivelson, M. G., K. K. Khurana, C. T., Russell, M. Volwerk, R. J. Walker, and C. Zimmer, Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa, Science, 289, 1340–1343, 2000.

  19. Kuramoto, K. and T. Matsui, Formation of a hot proto-atmosphere on the accreting giant-icy-satellite: Implications for the origin and evolution of Titan, Ganymede and Callisto, J. Geophys. Res., 99, 21183–22120, 1994.

  20. Landau, L. and E. Lifshitz, Theory of Elasticity, 3rd ed., Pergamon Press, Oxford, 2002.

  21. Leith, A. C. and W B. McKinnon, Is there evidence for polar wander on Europa?, Icarus, 120, 387–398, 1996.

  22. Lunine, J. and D. J. Stevenson, Formation of the Galilean satellites in a gaseous nebula, Icarus, 52, 14–39, 1982.

  23. Mason, B., Handbook of Elemental Abundances in Meteorites, New York, Gordon and Breach, 1971.

  24. McKinnon, W. B., Geodynamics of icy satellites, in Solar System Ices, edited by B. Schmitt et al., pp. 525–550, Kluwer Academic Press, Dordrecht, 1998.

  25. Moore, W B. and G. Schubert, Note: The tidal response of Europa, Icarus, 147, 317–319, 2000.

  26. Nimmo, F., Stresses generated in cooling viscoelastic ice shells: Application to Europa, J. Geophys. Res., 109, doi:10.1029/2004JE002347, 2004.

  27. Ojakangas, G. W and D. J. Stevenson, Thermal state of an ice shell on Europa, Icarus, 81, 220–241, 1989.

  28. Pappalardo, R. T. and R. J. Sullivan, Evidence for separation across a gray band on Europa, Icarus, 123, 557–567, 1996.

  29. Pappalardo, R. T., M. J. S. Belton, H. H. Breneman, M. H. Carr, C. R. Chapman, G. C. Collins, T. Denk, S. Fagents, P. E. Geissler, B. Giese, R. Greeley, R. Greenberg, J. W. Head, P. Helfenstein, G. Hoppa, S. D. Kadel, K. P. Klaasen, J. E. Klemaszewski, K. Magee, A. S. McEwen, J. M. Moore, W. B. Moore, G. Neukum, C. B. Phillips, L. M. Prockter, G. Schubert, D. A. Senske, R. J. Sullivan, B. R. Tufts, E. P. Turtle, R. Wagner, and K. K. Williams, Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., 104, 24015–24055, 1999.

  30. Passey, Q. R. and E. M. Shoemaker, Craters and basins on Ganymede and Callisto: Morphological indicators of crustal evolution, in Satellites of Jupiter, edited by D. Morrison, pp. 379–434, Univ of Arizona Press, Tucson, 1982.

  31. Phillips, C. B., A. S. McEwen, G. V. Hoppa, S. A. Fagents, R. Greeley, J. E. Klemaszewski, R. T. Pappalardo, K. P. Klaasen, and H. H. Breneman, The search for current geologic activity on Europa, J. Geophys. Res., 105, 22579–22597, 2000.

  32. Prockter, L. M. and R. T. Pappalardo, Folds on Europa: Implications for crustal cycling and accommodation of extension, Science, 289, 941–944, 2000.

  33. Prockter, L. M., J. W. Head, R. T. Pappalardo, R. J. Sullivan, A. E. Clifton, B. Giese, R. Wagner, and G. Neukum, Morphology of Europan bands at high resolution: A mid-ocean ridge-type rift mechanism, J. Geophys. Res., 107, doi:10.1029/2000JE001458, 2002.

  34. Rathbun, J. A., G. S. Musser, and S. W. Squyres, Ice diapirs on Europa: Implications for liquid water, Geophys. Res. Lett., 25, 4157–4160, 1998.

  35. Sarid, A. R., R. Greenberg, G. V. Hoppa, P. Geissler, and B. Preblich, Crack azimuths on Europa: Time sequence in the sourthern leading face, Icarus, 168, 144–157, 2004.

  36. Sasaki, S. and K. Nakazawa, Metal-silicate fractionation in the growing Earth: Energy source for the terrestrial magma ocean, J. Geophys. Res., 91, 9231–9238, 1986.

  37. Schenk, P. and W. B. McKinnon, Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell, Icarus, 79, 75–100, 1989.

  38. Schubert, G., T. Spohn, and R. T. Reynolds, Thermal histories, and internal structures of the moons of the solar system, in Satellites, edited by J. A. Burns and M. S. Matthews, pp. 224–292, Univ of Arizona Press, Tucson, 1986.

  39. Segatz, M., T. Spohn, M. N. Ross, and G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io, Icarus, 75, 187–206, 1988.

  40. Showman, A. P. and L. Han, Numerical simulations of convection in Eu-ropa’s ice shell: Implications for surface features, J. Geophys. Res., 109, doi:10.1029/2003JE002103, 2004.

  41. Sotin, C., O. Grasset, and S. Beauchesne, Thermodynamic properties of high pressure ices: Implications for the dynamics and internal structure of large icy satellites, in Solar System Ices, edited by B. Schmitt et al., pp. 79–96, Kluwer Academic Press, Dordrecht, 1998.

  42. Spencer, J. R., L. K. Tamppari, T. Z. Martina, and L. D. Travis, Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies, Science, 284, 1514–1516, 1999.

  43. Squyres, S. W., The evolution of tectonic features on Ganymede, Icarus, 52, 545–559, 1982.

  44. Squyres, S. W. and K. C. Croft, The tectonics on icy satellites, in Satellites, edited by J. A. Burns and M. S. Matthews, pp. 293–341, Univ of Arizona Press, Tucson, 1986.

  45. Steiger, R. H. and E. Jager, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology, Earth Planet. Sci. Lett., 36, 359–362, 1977.

  46. Sullivan, R., R. Greeley, K. Homan, J. Klemaszewski, M. J. S. Belton, M. H. Carr, C. R. Chapman, R. Tufts, J. W. Head, R. T. Pappalardo, J. Moore, P. Thomas, and the Galileo Imaging Team, Episodic plate separation and fracture infill on the surface of Europa, Nature, 391, 371–373, 1998.

  47. Tufts, B. R., R. Greenberg, G. Hoppa, and P. Geissler, Lithospheric dilation on Europa, Icarus, 146, 75–97, 2000.

  48. Tobie, G., G. Choblet, and C. Sotin, Tidally heated convection: Constraints on Europa’s ice shell thickness, J. Geophys. Res., 108, doi:10.1029/2003JE002099, 2003.

  49. Turcotte, D. L. and G. Schubert, Geodynamics, 2nd ed., John Wiley, New York, 2002.

  50. Zahnle, K., P. Schenk, H. Levison, and L. Dones, Cratering rates in the outer solar system, Icarus, 163, 263–289, 2003.

  51. Zahnle, K., P. Schenk, L. Dones, and H. Levison, Cratering rates in the Jovian system, Workshop onEuropa’s icy shell: Past, Present, and Future, abstract 7052, 2004.

  52. Zuber, M. T. and E. M. Parmentier, Lithospheric stress due to radiogenic heating of an ice-silicate body: Implications for Ganymede’s tectonic evolution, Proc. Lunar Planet. Sci. Conf. 14th., in J. Geophys. Res. Suppl. 89, B429–B437, 1984.

Download references

Author information



Corresponding author

Correspondence to Jun Kimura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kimura, J., Yamagishi, Y. & Kurita, K. Tectonic history of Europa: Coupling between internal evolution and surface stresses. Earth Planet Sp 59, 113–125 (2007).

Download citation

Key words

  • Thermal history
  • tectonics
  • crustal stress
  • structural evolution