Skip to main content

Atmospheric stability at 90 km, 78°N, 16°E


We employ observations obtained from a meteor wind radar to derive ambipolar diffusion coefficients, neutral temperatures, temperature gradients and, subsequently, Brunt-Väisälä frequencies at an altitude of 90 km over Svalbard (78°N, 16°E). The derived values showed a good agreement with independent measurements at each step of the analysis. Current atmospheric models are based on sparse data obtained at such high latitude, so these results represent a viable alternative for incorporating in subsequent studies of atmospheric dynamics, particularly if the derived monthly variabilities are included. The Brunt-Väisälä frequencies are then combined with wind shear measurements to estimate horizontally averaged gradient Richardson Numbers (Ri). We find Ri to be consistently larger in summer than winter due to wind shears being similarly larger in winter and augmented by the inverse seasonal variation in Brunt-Väisälä frequency. These seasonal variations result in Ri indicative of dynamic stability in summer and instability in winter. The variabilities in wind shear and Brunt-Väisälä frequency are then included to—albeit more qualitatively—illustrate the distribution between stability and static and dynamic instabilities as a function of season, using a novel portrayal pioneered by Zink and Vincent (J. Geophys. Res., 109, doi:10.1029/2003JD003992, 2004). The resulting picture is discussed in the framework of current conceptions of distribution of turbulent energy dissipation with height and season and of current opinion of the mesopause structure at 78°N.


  • Bertin, F., J. Barat, and R. Wilson, Energy dissipation rates, eddy diffusivity, and the Prandtl number: an in situ experimental approach and its consequences on radar estimate of turbulent parameters, Radio Sci., 32, 791–804, 1997.

    Article  Google Scholar 

  • Cervera, M. A. and I. M. Reid, Comparison of atmospheric parameters derived from meteor observations with CIRA, Radio Sci., 35, 833–843, 2000.

    Article  Google Scholar 

  • Fritts, D. C. and M. J. Alexander, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106, 2003.

    Article  Google Scholar 

  • Galligan, D. P., G. E. Thomas, and W. J. Baggaley, On the relationship between meteor height and ambipolar diffusion, J. Atmos. Solar-Terr. Phys., 66, 899–906, 2004.

    Article  Google Scholar 

  • Hall, C. M., U.-P. Hoppe, T. A. Blix, E. V. Thrane, A. H. Manson, and C. E. Meek, Seasonal variation of turbulent energy dissipation rates in the polar mesosphere: a comparison of methods, Earth Planets Space, 51, 515–524, 1999.

    Article  Google Scholar 

  • Hall, C. M., T. Aso, and M. Tsutsumi, An examination of high latitude upper mesosphere dynamic stability using the Nippon/Norway Svalbard Meteor Radar, Geophys. Res. Lett., 29, 1211–1213, 2002.

    Article  Google Scholar 

  • Hall, C. M., T. Aso, M. Tsutsumi, J. Höffner, and F. Sigernes, Multiinstrument derivation of 90 km temperatures over Svalbard (78dgN 16°E), Radio Sci., 39, doi: 10.1029/2004RS003069, 2004.

  • Hall, C. M., T. Aso, M. Tsutsumi, J. Höffner, F. Sigernes, and D. A. Holdsworth, Neutral air temperatures at 90km and 70° and 78°N, J. Geophys. Res., 111, D14105, doi:10.1029/2005JD006794, 2006.

    Article  Google Scholar 

  • Holdsworth, D. A., R. J. Morris, D. J. Murphy, I. M. Reid, G. B. Burns, and W. J. R. French, Antarctic mesospheric temperature estimation using the Davis MST radar, J. Geophys. Res., 111, 1–13, D05108, doi:10.1029/2005JD006589, 2006.

    Google Scholar 

  • Kundu, P. K., Fluid Mechanics, 638 pp., Academic Press, San Diego, 1990.

    Google Scholar 

  • Lübken, F.-J., Rocket-borne measurements of small scale structures and turbulence in the upper atmosphere, Adv. Space Res., 17, (11)25–(11)35, 1996.

    Google Scholar 

  • Lübken, F.-J., Thermal structure of the Arctic summer mesosphere, J. Geophys. Res., 104, 9135–9149, 1999.

    Google Scholar 

  • Lübken, F.-J. and A. Müllemann, First in situ measurements in the summer mesosphere at very high latitudes (78°N), J. Geophys. Res., 108(D8), 8448, doi.10.1029/2002JD002414, 2003.

    Article  Google Scholar 

  • Lübken, F.-J. and U. von Zahn, Thermal structure of the mesopause region at polar latitudes, J. Geophys. Res., 96, 20841–20857, 1991.

    Article  Google Scholar 

  • McIntyre, M. E., On dynamics and transport near the polar mesopause in summer, J. Geophys. Res., 94, 14617–14628, 1989.

    Article  Google Scholar 

  • Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002.

    Article  Google Scholar 

  • Roper, R. G. and J. W. Brosnahan, Imaging Doppler interferometry and the measurement of atmospheric turbulence, Radio Sci., 32, 1137–1148, 1997.

    Article  Google Scholar 

  • Singer, W., J. Bremer, J. Weiß, W. K. Hocking, J. Höffner, M. Donner, and P. Espy, Meteor radar observations at middle and Arctic latitudes, Part 1: mean temperatures, J. Atmos. Solar-Terr. Phys., 66, 607–616, 2004.

    Article  Google Scholar 

  • Weinstock, J., Vertical turbulent diffusion in a stably stratified fluid, J. Atmos. Sci., 35, 1022–1027, 1978.

    Article  Google Scholar 

  • Zink, F. and R. A. Vincent, Some inferences on turbulence generation by gravity waves, J. Geophys. Res., 109, doi:10.1029/2003JD003992, 2004.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. M. Hall.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Cite this article

Hall, C.M., Aso, T. & Tsutsumi, M. Atmospheric stability at 90 km, 78°N, 16°E. Earth Planet Sp 59, 157–164 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Mesosphere
  • stability
  • Brunt-Väisälä frequency
  • Arctic
  • meteor radar