Skip to main content

Relocation of a seafloor transponder—Sustaining the GPS-Acoustic technique

Abstract

Rigid seafloor arrays of three to four precision acoustic transponders have been repeatedly positioned with the GPS-Acoustic technique to measure horizontal plate motion. In the event that one transponder becomes inactive, a replacement transponder must be precisely located relative to the existing array. Here we present a technique to determine the geodetic azimuth and baseline between the inactive and replacement transponders. We include three examples of relocations between 2002 and 2003 on the Juan de Fuca plate and near the Peru-Chile trench, which add ±16–29 mm uncertainty to the GPS-Acoustic estimated position. A simulation of optimal network geometry shows that the relocation’s contribution to uncertainty can be as low as ±10 mm.

References

  1. Caspary, W. F., Concepts of Network and Deformation Analysis, 183 pp., Monograph 11, Sydney, University of New South Wales, School of Surveying, 1988.

    Google Scholar 

  2. Chadwell, C. D., Shipboard towers for Global Positioning System antennas, Ocean Engineering, 30, 1467–1487, 2003.

    Article  Google Scholar 

  3. Chadwell, C. D. and Y. Bock, Direst estimation of absolute precipitable water in ocean regions by GPS tracking of a coastal buoy, Geophys. Res. Lett., 28, 3701–3704, 2001.

    Article  Google Scholar 

  4. Chen, C. T. and F. J. Millero, Speed of sound at high pressures, J. Acoust. Soc. Am., 62, 1129–1135, 1977.

    Article  Google Scholar 

  5. Del Grosso, V. A., New equations for the speed of sound in natural waters (with comparisons to other equations), J. Acoust. Soc. Am., 56, 1084–1091, 1974.

    Article  Google Scholar 

  6. Fujita, M., T. Ishikawa, M. Mochizuki, M. Sato, S. Toyama, M. Katayama, K. Kawai, Y. Matusumoto, T. Yabuki, A. Asada, and O. L. Colombo, GPS/Acoustic seafloor geodetic observations: method of data analysis and application, Earth Planets Space, 58, 265–275, 2006.

    Article  Google Scholar 

  7. Gagnon, K., C. David Chadwell, and E. Norabuena, Measuring the onset of locking in the Peru-Chile Trench with GPS and acoustic measurements, Nature, 434, 205–208, 2005.

    Article  Google Scholar 

  8. Hildebrand, J. A., C. D. Chadwell, S. M. Wiggins, and F. N. Speiss, Offshore geodetic monitoring on the southeast flank of Kilauea Volcano, Seismological Research Letters, 71, 232, 2000.

    Google Scholar 

  9. Kido, M., H. Fujimoto, S. Miura, Y. Osada, K. Tsuka, and T. Tabei, Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys, Earth Planets Space, 58, 1–5, 2006.

    Article  Google Scholar 

  10. Leick, A., GPS Satellite Surveying, 464 pp., John Wiley and Sons, 3rd edition, 2004.

    Google Scholar 

  11. Millero, F. J. and X. Li, Comments on “On equations for the speed of sound in seawater”, J. Acoust. Soc. Am., 95, 2757–2759, 1995.

    Article  Google Scholar 

  12. Miura, S., A. Sweeney, H. Fujimoto, H. Osaki, E. Kawai, R. Ichikawa, T. Konko, Y. Osada, and C. D. Chadwell, Evaluations of accuracy in kinematic GPS analyses using a precision roving antenna platform, EOS, 83, Fall Meet. Suppl. Abstract G52A-0959, 2002.

  13. Obana, K., H. Katao, and M. Ando, Seafloor positioning system with GPSacoustic link for crustal dynamics observation—a preliminary result from experiments in the sea, Earth Planets Space, 52, 415–423, 2000.

    Article  Google Scholar 

  14. Osada, Y., H. Fujimoto, S. Miura, A. Sweeney, T. Kanazawa, S. Nakao, S. Sakai, J. A. Hildebrand, and C. D. Chadwell, Estimation and correction for the effect of sound velocity variation on GPS/Acoustic seafloor positioning; an experiment off Hawaii Island, Earth Planets Space, 55, e17–e20, 2003.

    Article  Google Scholar 

  15. Phillips, K. and C. D. Chadwell, Refined deformation models of the south flank of Kilauea Volcano, Hawaii based on seafloor geodetic data from 2000 to 2004, EOS, 86, Fall Meet. Suppl. Abstract G53B-0882, 2005.

  16. Purcell, G. H., L. E. Young, S. K. Wof, T. K. Meehan, C. B. Duncan, S. S. Fisher, F. N. Spiess, G. Austin, D. E. Boegman, C. D. Lowenstein, C. Rocken, and T. M. Kelecy, Accurate GPS measurement of the location and orientation of a floating platform, Marine Geodesy, 14, 225–264, 1991.

    Google Scholar 

  17. Spiess, F. N., Suboceanic geodetic measurements, IEEE Transactions on Geosciences and Remote Sensing, 23, 502–510, 1985.

    Article  Google Scholar 

  18. Spiess, F. N., C. D. Chadwell, J. H. Hildebrand, H. Dragert, D. Jabson, A. Sweeney, and R. Zimmerman, New geodetic reference stations on the Juan de Fuca Plate, EOS, 81, Fall Meet. Suppl. Abstract G11C-09, 2000.

  19. Spiess, F. N., C. D. Chadwell, J. H. Hildebrand, L. E. Young, G. H. Purcell, Jr., and H. Dragert, Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth Planet. Int., 108, 101–112, 1998.

    Article  Google Scholar 

  20. Webb, F. H. and J. F. Zumberge, An introduction to GIPSY/OASIS-II, Technical Report D-11088, Jet Propulsion Lab, 1997.

    Google Scholar 

  21. Wilson, W. D., Equation for speed of sound in seawater, J. Acoust. Soc. Am., 32, 1357, 1960.

    Article  Google Scholar 

  22. Yamada, T., M. Ando, K. Tadokoro, K. Sato, T. Okuda, and K. Oike, Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements, Earth Planets Space, 54, 871–881, 2002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. D. Chadwell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gagnon, K.L., Chadwell, C.D. Relocation of a seafloor transponder—Sustaining the GPS-Acoustic technique. Earth Planet Sp 59, 327–336 (2007). https://doi.org/10.1186/BF03352692

Download citation

Key words

  • Seafloor geodesy
  • GPS-Acoustic