Skip to main content

3-D coseismic displacement field of the 2005 Kashmir earthquake inferred from satellite radar imagery

Abstract

We use radar amplitude images acquired by the ENVISAT/ASAR sensor to measure the coseismic deformation of the 8 October 2005 Kashmir earthquake. We use the offset images to constrain the fault trace, which is in good agreement with field investigations and aftershock distribution. We infer a complete 3-D surface displacement field of the Kashmir earthquake using the offset measurements derived from both descending and ascending pairs of SAR images. The peak-to-peak offsets are up to (3.9, 3.6, 4.1) m in the east, north, and up directions respectively, i.e., 2.9 and 4.1 m along and across the fault assuming striking 325?. We model the coseismic displacements using a four-segment dislocation model in a homogeneous elastic half-space. We first estimate the source parameters using a uniform slip model. Then we fix the optimal geometric parameters and solve for the slip distribution using a bounded variable least-squares (BVLS) method. The resultant maximum slip is about 9.0 m at depth of 4–8 km beneath Muzaffarabad. We find a scalar moment of 2.34 × 1020 N m (Mw7.55), of which almost 82% is released in the uppermost 10 km.

References

  1. Aki, K. and P. G. Richards, Quantitative Seismology, second edn, University Science Books, Sausalito, CA, 2002.

    Google Scholar 

  2. Avouac, J.-P., F. Ayoub, S. Leprince, et al., The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis, Earth Planet Sci. Lett., 249, 514–528, 2006.

    Article  Google Scholar 

  3. Bilham, R. and K. Wallace, Future Mw > 8 earthquakes in the Himalaya: Implications from the 26 Dec 2004 Mw = 9.0 earthquake on India’s eastern plate margin, Geol. Surv. India Spl., 85, 1–14, 2005.

    Google Scholar 

  4. Bilham, R., V. K. Gaur, and P. Molnar, Himalayan seismic hazard, Science, 293, 1442–1444, 2001.

    Article  Google Scholar 

  5. Carroll, D. L., Genetic algorithms and optimizing chemical Oxygen-Iodine Lasers, in Developments in Theoretical and Applied Mechanics, edited by H. B. Wilson, R. C. Batra, C. W. Bert et al., XVIII, School of Engineering, The University of Alabama, pp. 411–424, 1996.

    Google Scholar 

  6. Farr, M. and M. Kobrick, Shuttle Radar Topography Mission produces a wealth of data, EOS Trans., 81, 583–585, 2000.

    Article  Google Scholar 

  7. Fialko, Y., Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake, J. Geophys. Res., 109(B03307), doi:10.1029/2003JB002756, 2004.

    Google Scholar 

  8. Fialko, Y., M. Simons, and D. Agnew, The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector Mine earthquake, California, from space geodetic observations, Geophys. Res. Lett., 28(16), 3063–3066, 2001.

    Article  Google Scholar 

  9. Fujiwara, S., M. Tobita, H. P. Sato, et al., Satellite data give snapshot of the 2005 Pakistan earthquake, EOS Trans., 87(7), 73–77, 2006.

    Article  Google Scholar 

  10. Harris, R. A. and P. Segall, Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas fault, J. Geophys. Res., 92(B8), 7945–7962, 1987.

    Article  Google Scholar 

  11. Jónsson, S., H. Zebker, P. Segall, et al., Fault slip distribution of the 1999 Mw7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements, B. Seismol. Soc. Am., 92(4), 1377–1389, 2002.

    Article  Google Scholar 

  12. Kumahara, Y. and T. Nakata, Active faults in the epicenter area of the 2005 Pakistan earthquake, 41, Res. Cent. for Reg. Geogr., Hiroshima Univ., Hiroshima, Japan, 2006.

    Google Scholar 

  13. Lasserre, C., G. Peltzer, F. Crampé, et al., Coseismic deformation of the 2001 Mw = 7.8 kokoxili earthquake in tibet, measured by synthetic aperture radar interferometry, J. Geophys. Res., 10(B12408), doi:10.1029/2004JB003500, 2005.

  14. Massonnet, D., M. Rossi, C. Carmona, et al., The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138–142, 1993.

    Article  Google Scholar 

  15. Masterlark, T. and Z. Lu, Transient volcano deformation sources imaged with interferometric synthetic aperture radar: Application to Seguam Island, Alaska, J. Geophys. Res., 109(B01401), doi:10.1029/ 2003JB002558, 2004.

    Google Scholar 

  16. Michel, R., J.-P. Avouac, and J. Taboury, Measuring ground displacement from SAR amplitude images: application to the Landers earthquake, Geophys. Res. Lett., 26(7), 875–878, 1999a.

    Article  Google Scholar 

  17. Michel, R., J.-P. Avouac, and J. Taboury, Measuring near field coseismic displacement from SAR images: Application to the Landers earthquake, Geophys. Res. Lett., 26(19), 3017–3020, 1999b.

    Article  Google Scholar 

  18. Nakata, T., H. Tsutsumi, S. H. Khan, et al., Active faults of Pakistan, 141 pp., Res. Cent. for Reg. Geogr., Hiroshima Univ., Hiroshima, Japan, 1991.

    Google Scholar 

  19. Okada, Y., Surface deformation due to shear and tensile faults in a halfspace, B. Seismol. Soc. Am., 75(4), 1135–1154, 1985.

    Google Scholar 

  20. Parsons, T., R. S. Yeats, Y. Yagi, et al., Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake, Geophys. Res. Lett., 33(L06304), doi:10.1029/2005GL025429, 2006.

  21. Pathier, E., E. J. Fielding, T. J. Wright, et al., Displacement field and slip distribution of the 2005 kashmir earthquake from SAR imagery, Geophys. Res. Lett.33(L20310), doi:10.1029/2006GL027193, 2006.

  22. Peltzer, G., F. Crampé, and G. King, Evidence of the nonlinear elasticity of the crust from Mw7.6 Manyi (Tibet) earthquake, Science, 286, 272–276, 1999.

    Article  Google Scholar 

  23. Seeber, L. and J. G. Armbruster, Seismicity of the Hazra arc in northern Pakistan: Decollement vs. basement faulting, in Geodynamics of Pakistan, edited by A. Farah and K. A. DeJong, Geological Survey of Pakistan, Quetta, pp. 131–142, 1979.

    Google Scholar 

  24. Simons, M., Y. Fialko, and L. Rivera, Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations, B. Seismol. Soc. Am., 92(4), 1390–1402, 2002.

    Article  Google Scholar 

  25. Stark, P. B. and R. L. Parker, Bounded variable least squares: an algorithm and applications, Computational Statistics, 10, 129–141, 1995.

    Google Scholar 

  26. Tobita, M., M. Murakami, H. Nakagawa, et al., 3-D surface deformation of the 2000 Usu eruption measured by matching of SAR images, Geophys. Res. Lett., 28(22), 4291–4294, 2001.

    Article  Google Scholar 

  27. U.S. Geological Survey Earthquake Hazards Program, Magnitude 7.6 — PAKISTAN — usdyae, http://earthquake.usgs.gov/eqcenter/eqinthenews/2005/usdyae/, 2005.

    Google Scholar 

  28. Werner, C., U. Wegmüller, T. Strozzi, et al., Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images, International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005.

    Google Scholar 

  29. Wessel, P. and W. H. F. Smith, New, improved version of generic mapping tools released, EOS Trans., 79(47), 579, 1998.

    Article  Google Scholar 

  30. Wright, T. and E. Pathier, Locating the Kashmir fault, http://comet.nerc.ac.uk/newskashmir.html, 2005.

    Google Scholar 

  31. Wright, T. J., B. E. Parsons, and Z. Lu, Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett.31, L01607, doi:10.1029/2003GL018827, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Ge, L., Xu, C. et al. 3-D coseismic displacement field of the 2005 Kashmir earthquake inferred from satellite radar imagery. Earth Planet Sp 59, 343–349 (2007). https://doi.org/10.1186/BF03352694

Download citation

Key words

  • Kashmir earthquake
  • offset
  • 3-D displacement
  • slip distribution