Skip to main content

Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea

Abstract

The generation mechanism of the 1741 Oshima-Oshima tsunami, which is considered to be the most destructive tsunami that has ever originated in the Japan Sea, has been the subject of much debate. The tsunami caused about 2,000 casualties along the Hokkaido and northern Honsu coasts and inflicted damage as far as the Korean Peninsula. The tsunami source is located between recent tsunamigenic earthquakes, but there is no historical record of an earthquake in 1741. In contrast, the records indicate volcanic activity of Oshima-Oshima, including a large-scale sector collapse, although the volume change associated with the subaerial landslide is too small to explain the observed tsunami heights. Recent marine surveys indicate that the landslide extended to the ocean bottom with a volume change of about 2.5 km3, nearly an order of magnitude larger than the subaerial slide. On the basis of mapped bathymetry, the generation of the tsunami is calculated using a simple kinematic landslide model. The tsunami propagation is computed in two different grids—a 6″ grid around the source and a 1′ grid for the entire Japan Sea. A parameter search of the model shows that the observed tsunami heights are best explained by a horizontal slide velocity of 40 m/s and a rise time of 2 min. The large vertical drop of the landslide and the coupling of the submarine landslide and tsunami are the main factors responsible for the large tsunami.

References

  • Abe, K., Quantification of historical tsunamis by the Mt scale, Zisin (J. Seism. Soc. Jpn), 52, 369–377, 1999 (in Japanese with English abstract).

    Google Scholar 

  • Aki, K. and P. G. Richards, Quantitative Seismology, Vol. II, W. H, Freeman and Company. 932 pp, 1980.

  • Aida, I., Reliability of a tsunami source model derived from fault parameters, J. Phys. Earth, 26, 57–73, 1978.

    Article  Google Scholar 

  • Aida, I., An estimation of tsunamis generated by volcanic eruptions—the 1741 eruption of Oshima-Ohshima, Hokkaido, Bull. Earthq. Res. Inst. Univ. Tokyo, 59, 519–531, 1984 (in Japanese with English abstract).

    Google Scholar 

  • Fukao, Y. and M. Furumoto, Mechanism of large earthquakes along the eastern margin of the Japan Sea, Tectonophysics, 26, 247–266, 1975.

    Article  Google Scholar 

  • Harbitz, C. B., Model simulations of tsunamis generated by the Storegga slides, Mar. Geology, 105, 1–21, 1992.

    Article  Google Scholar 

  • Hatori, T., Reexamination of wave behavior of the Hokkaido-Oshima (the Japane Sea) tsunami in 1741—their comparison with the 1983 Nihonkai-chubu tsunami, Bull. Earthq. Res. Inst. Univ. Tokyo, 59, 115–125, 1984 (in Japanese with English abstract).

    Google Scholar 

  • Hatori, T., Hokkaido Nansei-oki earthquake tsunami and seismic gap, Gekkan Chikyu (Earth Monthly), suppl. 7, 211–218, 1994 (in Japanese).

    Google Scholar 

  • Heinrich, P., A. Mangeney, S. Guibourg, R. Roche, G. Boudon, and J.- L. Cheminee, Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles, Geophys. Res. Lett., 25, 3697–3700, 1998.

    Article  Google Scholar 

  • Imamura, F. and M. M. A. Imteaz, Long waves in two-layers: governing equations and numerical model, Sci. Tsunami Hazards, 13, 3–24, 1995.

    Google Scholar 

  • Imamura, F. and T. Matsumoto, Field survey of the 1741 Oshima- Oshima volcanic tsunami, Tsunami Engineering Technical Report, Tohoku Univ., 15, 85–105, 1998 (in Japanese).

    Google Scholar 

  • Imamura, F., S. Okubo, K. Ban, K. Takaoka, A. Sannomiya, S. Yamaki, and E. Kobayashi, Field investigation on the 1741 Kampo Oshima tsunami in Tsugaru peninsula, the northern part of Japan—Detailed survey with additional document “Tsugaru-han Okuni Nikki”, Rekishi Jishin (Historical Earthquakes), 18, 166–175, 2002 (in Japanese).

    Google Scholar 

  • Jiang, L. and P. LeBlond, 3-Dimensional modeling of tsunami generation due to a submarine mudslide, J. Phys. Ocean, 24, 559–572, 1994.

    Article  Google Scholar 

  • Johnson, R. W., Large-scale volcanic cone collapse: the 1888 slope failure of Ritter Volcano, and other examples from Papua New Guinea, Bull. Volcanol, 49, 669–679, 1987.

    Article  Google Scholar 

  • Kajiura, K., Tsunami source, energy and the directivity of wave radiation, Bull. Earthq. Res. Inst. Univ. Tokyo, 48, 835–869, 1970.

    Google Scholar 

  • Kato, Y., Topography and geology of the sector collapse deposit of the Oshima-Oshima island, JAMSTEC J. Deep Sea Res., 13, 659–667, 1997 (in Japanese with English abstract).

    Google Scholar 

  • Katsui, Y. and M. Yamamoto, The 1741-1742 activity of Oshima-oshima volcano, north Japan, J. Fac. Sci. Hokkaido Univ. Ser. IV, 19, 527–536, 1981.

    Google Scholar 

  • Katsui, Y., I. Yokoyama, S. Ehara, H. Yamashita, K. Hiida, and M. Yamamoto, Oshima-Oshima. Report of the Volcanoes in Hokkaido, part.6. Committee for Prevention of the Natural Disasters of Hokkaido, Sapporo, 82 pp., 1977 (in Japanese).

    Google Scholar 

  • Kawamata, K, K, Takaoka, K. Ban, F. Imamura, S. Yamaki, and E. Kobayashi, Model of tsunami generation by collapse of volcanic eruption: the 1741 Oshima-Oshima tsunami, in Tsunamis: Case Studies and Recent Developments, edited by K. Satake, Springer, 79–96, 2005.

    Chapter  Google Scholar 

  • Kokelaar, P. and C. Romagnoli, Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy, Bull. Volcanol., 57, 240–262, 1995.

    Article  Google Scholar 

  • Nakamura, K., Possible nascent trench along the eastern Japan Sea as the boundary between Eurasian and North American plates, Bull. Earthq. Res. Inst. Univ. Tokyo, 58, 711–722, 1983 (in Japanese with English abstract).

    Google Scholar 

  • Ohtake, M., A seismic gap in the eastern margin of the Japan Sea as inferred from the time-space distribution of past seismicity, The Island Arc, 4, 156–165, 1995.

    Article  Google Scholar 

  • Ruff, L. J., Some aspects of energy balance and tsunami generation by earthquakes and tsunamis, Pure Appl. Geophys., 160, 2155–2176, 2003.

    Article  Google Scholar 

  • Satake, K., Re-examination of the 1940 Shakotan-oki earthquake and the fault parameters of the earthquakes along the eastern margin of the Japan Sea, Phys. Earth Planet. Inter., 43, 137–147, 1986.

    Article  Google Scholar 

  • Satake, K., Linear and non-linear computations of the 1992 Nicaragua earthquake tsunami, Pure and Applied Geophysics, 144, 455–470, 1995.

    Article  Google Scholar 

  • Satake, K. and Y. Kato, The 1741 Oshima-Oshima Eruption: Extent and Volume of Submarine Debris Avalanche, Geophys. Res. Lett., 28, 427–430, 2001.

    Article  Google Scholar 

  • Satake, K. and Y. Tanioka, Tsunami generation of the 1993 Hokkaido Nansei-oki earthquake, Pure Appl. Geophys., 144, 803–821, 1995.

    Article  Google Scholar 

  • Satake, K., J. R. Smith, and K. Shinozaki, Three-dimensional reconstruction and tsunami model of the Nuuanu and Wailau giant landslides, Hawaii, in Hawaiian Volcanoes: Deep Underwater Perspectives, edited by Takahashi et al., AGU Geophysical Monograph, 128, 333–346, 2002.

    Article  Google Scholar 

  • Seno, T., T. Sakurai, and S. Stein, Can the Okhotsk plate be discriminated from the North American plate?, J. Geophys. Res., 101, 11305–11351, 1996.

    Article  Google Scholar 

  • Silver, E., S. Day, S. Ward, G. Hoffmann, P. Llanes, A. Lyons, N. Driscoll, R. Perembo, S. John, S. Saunders, F. Taranu, L. Anton, I. Abiari, B. Appelgate, J. Engels, J. Smith, and J. Taglioides, Island arc debris avalanches and tsunami generation, Eos Trans. AGU, 86, 485, 489, 2005.

    Google Scholar 

  • Tanioka, Y., K. Satake, and L. Ruff, Total analysis of the 1993 Hokkaido Nansei-oki earthquake using seismic wave, tsunami, and geodetic data, Geophys. Res. Lett., 22, 9–12, 1995.

    Article  Google Scholar 

  • Tinti, S., E. Bortolucci, and C. Vannini, A block-based theoretical model suited to gravitational sliding, Nat. Hazards, 16, 1–28, 1997.

    Article  Google Scholar 

  • Tinti, S., A. Maramai, A. Armigliato, L. Graziani, A. Manucci, G. Pagnoni, and F. Zaniboni, Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, southern Italy, Bull. Volcanol., 68, 450–561, 2005.

    Article  Google Scholar 

  • Tsuji, Y., W. S. Baek, K. S. Chu, and H. S. An, Report of the 1983 Nihonkai-Chubu earthquake tsunami along the east coast of the Republic of Korea, Review of Research for Disaster Prevention, No.90, National Research Center for Disaster Prevention, Ibaraki, Japan, 96 pp., 1985 (in Japanese with English abstract).

    Google Scholar 

  • Tsuji, Y., T. Nishihata, T. Sato, and K. Sato, Distribution of heights of the tsunami caused by the 1741 Kampo eruption of volcano Oshima- Oshima, Hokkaido, Gekkan Kaiyo special issue, 28, 15–44, 2002 (in Japanese).

    Google Scholar 

  • Voight, B., Time scale for the first moments of the May 18 eruption, in The 1980 Eruption of Mount St. Helens, Washington, edited by P. W. Lipman and D. R. Mullineaux, USGS Professional Paper, 1250, pp. 69–86, 1981.

    Google Scholar 

  • Voight, B., H. Glicken, R. J. Janda, and P. M. Douglass, Catastrophic rockslide avalanche of May 18, in The 1980 Eruption of Mount St. Helens, Washington, edited by P. W. Lipman and D. R. Mullineaux, USGS Professional Paper, 1250, pp. 347–377, 1981.

    Google Scholar 

  • Ward, S. N, Landslide tsunami, J. Geophys. Res., 106, 11201–11216, 2001.

    Article  Google Scholar 

  • Ward, S. N. and S. Day, Ritter Island Volcano- Lateral collapse and the tsunami of 1888, Geophys. J. Int., 154, 891–902, 2003.

    Article  Google Scholar 

  • Watts, P., S. T. Grilli, D. R. Tappin, and G. J. Fryer, Tsunami Generation by Submarine Mass Failure. II: Predictive equations and case studies, J. Waterway, Port, Coastal Ocean Engin, 131, 298–310, 2005.

    Article  Google Scholar 

  • Wei, D. and T. Seno, Determination of the Amurian plate motion, in Mantle Dynamics and Plate Interactions in East Asia, edited by Flower et al., AGU Geodynamics Series, 27, pp. 337–346, 1998.

    Article  Google Scholar 

  • Wessel, P. and W. H. F. Smith, New, improved version of Generic Mapping Tools released, Eos Trans. AGU, 79, 579, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Satake.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Satake, K. Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth Planet Sp 59, 381–390 (2007). https://doi.org/10.1186/BF03352698

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352698

Key words