Skip to main content

Variations in the equatorial ionization anomaly peaks in the Western Pacific region during the geomagnetic storms of April 6 and July 15, 2000

Abstract

This study utilizes total electron content (TEC) observed by a network of ground-based GPS receivers located in the Western Pacific region (120°E) to study the responses of the low-latitude equatorial ionization anomaly (EIA) to the two major magnetic storms that occurred during April 4–10 and July 12–18, 2000. The latitude, time, and TEC (LTT) maps in the northern and southern EIA regions show that both EIA peaks move equatorward along with a pronounced reduction of the TEC values 10–12 h after the storm onset. The variations in the EIA peak TEC values and locations in the northern EIA are highly correlated with those in the southern EIA. The correlation coefficients of the day-to-day variations of peaked TEC between the northern and southern EIA regions are 0.75 in the April storm and 0.83 in the July storm. The correlation coefficients of the day-to-day EIA peak movements between the two hemispheres are 0.98 in the April storm event and 0.88 in the July storm event. The highly correlated peaked TEC and movements between the northern and the southern hemisphere suggest that the storm-produced electrodynamics played a dominant role in affecting the low-latitude ionosphere during the two major storms.

References

  1. Anderson, D. N., A theoretical study of the ionospheric F-region equatorial anomaly, I, Theory, Planet. Space Sci., 21, 409–419, 1973.

    Article  Google Scholar 

  2. Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.

    Article  Google Scholar 

  3. Balan, N. and G. J. Bailey, Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 100(A11), 21,421–21,432, 1995.

    Article  Google Scholar 

  4. Blanc, M. and A. D. Richmond, The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669–1686, 1980.

    Article  Google Scholar 

  5. Buonsanto, Ionospheric Storms—A Review, Space Sci. Rev., 88, 563–601, 1999.

    Article  Google Scholar 

  6. Burns, A. G., T. L. Killen, and R. G. Roble, A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm, J. Geophys. Res., 96, 14153–14167, 1991.

    Article  Google Scholar 

  7. Burns, A. G., T. L. Killeen, G. R. Carignan, and R. G. Roble, Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms, J. Geophys. Res., 100(A8), 14,661–14,672, 1995.

    Article  Google Scholar 

  8. Duncan, R. A., The equatorial F region of the ionosphere, J. Atmos. Terr. Phys., 18, 89, 1960.

    Article  Google Scholar 

  9. Fejer, B. G. and L. Scherliess, Time dependent response of equatorial ionospheric electric field to magnetospheric disturbance, Geophys. Res. Lett., 22, 851–854, 1995.

    Article  Google Scholar 

  10. Fejer, B. G. and L. Scherliess, Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102(A11), 24047–24056, 10.1029/97JA02164, 1997.

    Article  Google Scholar 

  11. Fesen, C. G., G. Growley, and R. G. Roble, Ionospheric Effects at Low Latitudes During the March 22, 1979, Geomagnetic Storm, J. Geophys. Res., 94(A5), 5405–5417, 1989.

    Article  Google Scholar 

  12. Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan, Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893–3914, 1994.

    Article  Google Scholar 

  13. Fuller-Rowell, T. J., M. V. Codrescu, H. Risbeth, R. J. Moffett, and S. Quegan, On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101(A2), 2343–2354, 1996.

    Article  Google Scholar 

  14. Fuller-Rowell, T. J., M. V. Codrescu, R. G. Roble, and A. D. Richmond, How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm?, in Magnetic Storms, edited by B. T. Tsurutani, W. D. Gonzales and Y. Kamide, AGU Monograph, Washington D. C., 1997.

    Google Scholar 

  15. Fuller-Rowell, T. M., G. H. Millward, A. D. Richmond, and M. V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys., 64, 1383, 2002.

    Article  Google Scholar 

  16. Hanson, W. B. and R. J. Moffett, Ionization transport effects in the equatorial F region, J. Geophys. Res., 71, 5559, 1966.

    Article  Google Scholar 

  17. Jaggi, R. K. and R. A. Wolf, Self-consistent calculation of the motion of a sheet of ions in the magnetosphere, J. Geophys. Res., 78, 2852–2866, 1973.

    Article  Google Scholar 

  18. Kelley, M. C., B. G. Fejer, and C. A. Gonzales, An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6, 301–304, 1979.

    Article  Google Scholar 

  19. Kelley, M. C., J. J. Makela, J. L. Chau, and M. J. Nicolls, Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30(4), 1158, doi:10.1029/2002GL016321, 2003.

    Article  Google Scholar 

  20. Kil, H., L. J. Paxton, X. Pi, M. R. Hairston, and Y. Zhang, Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere, J. Geophys. Res., 108(A11), 1391, doi:10.1029/2002JA009782, 2003.

    Article  Google Scholar 

  21. Lin, C. H., A. D. Richmond, J. Y. Liu, H. C. Yeh, L. J. Paxton, G. Lu, H. F. Tsai, and S.-Y. Su, Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: Observational results, J. Geophys. Res., 110, A09S28, doi:10.1029/2004JA010900, 2005a.

    Google Scholar 

  22. Lin, C. H., A. D. Richmond, R. A. Heelis, G. J. Bailey, G. Lu, J. Y. Liu, H. C. Yeh, and S.-Y. Su, Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field, J. Geophys. Res., 110, A12312, doi:10.1029/2005JA011304, 2005b.

    Article  Google Scholar 

  23. Liu, J. Y., H. F. Tsai, and T. K. Jung, Total electron content obtained by using the global positioning system, Terr. Atmos. Oceanic Sci., 7, 107–117, 1996.

    Google Scholar 

  24. Lu, G., X. Pi, A. D. Richmond, and R. G. Roble, Variations of total electron content during geomagnetic disturbances: A model/observation comparison, Geophys. Res. Lett., 25(3), 253–256, 10.1029/97GL03778, 1998.

    Article  Google Scholar 

  25. Maruyama, N., A. D. Richmond, T. J. Fuller-Rowell, M. V. Codrescu, S. Sazykin, F. R. Toffoletto, R. W. Spiro, and G. H. Millward, Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere, Geophys. Res. Lett., 32, L17105, doi:10.1029/2005GL023763, 2005.

    Article  Google Scholar 

  26. Namba, S. and K.-I. Maeda, Radio Wave Propagation, 86 pp., Corona, Tokyo, 1939.

    Google Scholar 

  27. Prölss, G. W., Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35, 807–811, 1987.

    Article  Google Scholar 

  28. Prölss, G. W., Ionospheric F-Region Storms, in Handbook of Atmospheric Electrodynamics, edited by H. Volland, CRC Press, 1995.

    Google Scholar 

  29. Prölss, G. W., Magnetic storm associated perturbations of the upper atmosphere, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani et al., pp. 227–241, AGU, Washington D. C., 1997.

    Google Scholar 

  30. Richmond, A. D., Ionospheric electrodynamics using Magnetic Apex Coordinates, J. Geomag. Geoelectr., 47, 191–212, 1995.

    Article  Google Scholar 

  31. Richmond, A. D., C. Peymirat, and R. G. Roble, Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 108(A3), 1118, doi:10.1029/2002JA009758, 2003.

    Article  Google Scholar 

  32. Rishbeth, H., How the thermospheric circulation affects the ionospheric F2-layer, J. Atmos. Sol. Terr. Phys, 60, 1385–1402, 1998.

    Article  Google Scholar 

  33. Rishbeth, H., The equatorial F-layer: Progress and puzzles, Ann. Geophys., 18, 730, 2000.

    Article  Google Scholar 

  34. Rishbeth, H., T. J. Fuller-Rowell, and A. D. Rodger, F-layer storms and thermospheric composition, Phys. Scripta., 36, 327–336, 1987.

    Article  Google Scholar 

  35. Sastri, J. H., K. Niranjan, and K. S. V. Subbarao, Response of the equatorial ionosphere in the Indian (midnight) sector to the severe magnetic storm of July 15, 2000, Geophys. Res. Lett., 29(13), 1651, doi:10.1029/2002GL015133, 2002.

    Article  Google Scholar 

  36. Scherliess, L. and B. G. Fejer, Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res., 102(A11), 24,037–24,046, 1997.

    Article  Google Scholar 

  37. Senior, C. and M. Blanc, On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities, J. Geophys. Res., 89, 261–284, 1984.

    Article  Google Scholar 

  38. Spiro, R. W., R. A. Wolf, and B. G. Fejer, Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984, Ann. Geophys., 6, 39–50, 1988.

    Google Scholar 

  39. Tsai, H. F. and J. Y. Liu, Ionospheric total electron content response to solar eclipses, J. Geophys. Res., 104, 12657, 1999.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chien-Hung Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, C., Liu, J., Tsai, H. et al. Variations in the equatorial ionization anomaly peaks in the Western Pacific region during the geomagnetic storms of April 6 and July 15, 2000. Earth Planet Sp 59, 401–405 (2007). https://doi.org/10.1186/BF03352701

Download citation

Key words

  • Low-latitude equatorial ionization anomaly
  • Western Pacific region
  • Magnetic storms
  • Total electron content