Skip to main content

Diurnal variation of atmospheric Maxwell current over the low-latitude continental station, Tirunelveli, India (8.7°N, 77.8°E)

Abstract

Observations of atmospheric Maxwell current from the low-latitude continental station, Tirunelveli (8.7°N, 77.8°E), over a period of 8 years are presented in this study. The horizontal long-wire antenna is used as a sensor for picking up charges from the atmosphere. The objectives of the present work have been to understand the antenna system in response to different meteorological conditions and on fairweather days. We define a fairweather day as a day when there is no snowfall/rainfall at the measuring site, when there are high clouds less than 3 octas throughout the day, and when the wind speed is less than 10 m s−1. A sunrise effect is observed in the measured Maxwell current during fairweather days in all seasons. The measured current exhibits an increase that commences about 30 min before sunrise and lasts for nearly 1.5 h. The sunrise effect is found to be inhibited on days when there is pre-dawn convection and during the presence of rain, haze, or cloud cover. Barring the sunrise effect, the rest of the variations on fairweather day appear to follow a trend typical of the Carnegie curve. On clear cloudless conditions, reasonably good data are obtained during equinox and winter months but not in summer when strong winds associated with the onset of the southwest monsoon make the measurement of Maxwell current difficult and limited data are available.

References

  • Adlerman, E. J. and E. R. Williams, Seasonal variation of the global electric circuit, J. Geophys. Res., 101, 29,679–29,688, 1996.

    Article  Google Scholar 

  • Anisimov, S. V., E. A. Mareev, A. E. Sorokin, N. M. Shikhova, and E. M. Dmitriev, Electrodynamical properties of the fog. Izv., Atmos. Ocean. Phys., 39(1), 341–347, 2003.

    Google Scholar 

  • Anisimov, S. V., E. A. Mareev, N. M. Shikhova, A. E. Sorokin, and E. M. Dmitriev, On the electro-dynamical characteristics of the fog, J. Atmos. Res., 76, 16–28, 2005.

    Article  Google Scholar 

  • Bering, E. A., The global circuit: Global thermometer, weather by-product or climate modulator?, Rev. Geophys. Suppl., 845–862, 1995.

    Google Scholar 

  • Burke, H. K. and A. A. Few, Direct measurements of the atmospheric conduction current, J. Geophys. Res., 83, 3093–3098, 1978.

    Article  Google Scholar 

  • Burns, G. B., B. A. Tinsley, A. R. Klekociuk, O. A. Troshichev, A. V. Frank-Kamenetsky, M. L. Duldig, E. A. Bering, and J. M. Clem, Antarctic polar plateau vertical electric field variations across heliocentric current sheet crossings, J. Atmos. Terr. Phys., (68), 639–654, 2006.

    Article  Google Scholar 

  • Byrne, G. J., J. R. Benbrook, and E. A. Bering, Balloon observations of atmospheric electricity above the South pole: vertical electric field, conductivity and conduction current, J. Atmos. Terr. Phys., 53(9), 859–868, 1991.

    Article  Google Scholar 

  • Byrne, G. J., J. R. Benbrook, E. A. Bering, A. A. Few, G. A. Morris, W. J. Trabucco, and E. W. Paschal, Ground based instrumentation for measurements of atmospheric conduction current and electric field at South pole, J. Geophys. Res., 98, 2611–2618, 1993.

    Article  Google Scholar 

  • Cobb, W. E., Electrical Process in Atmospheres, edited by H. Dolezalek and R. Reiter, Steinkopff, Darmstadt, 161–167, 1977.

  • Deshpande, C. G. and A. K. Kamra, Diurnal variations of the atmospheric electric field and conductivity at Maitri, Antarctica, J. Geophys. Res., 106, 14,207–14,218, 2001.

    Article  Google Scholar 

  • Despiau, S. and E. Houngninou, Raindrop charge, Precipitation and Maxwell currents under tropical storms and showers, J. Geophys. Res., 101, 14,991–14,997, 1996.

    Article  Google Scholar 

  • Dolezalek, H., The atmospheric electric fog effect, Rev. Geophys., 1, 231–282, 1963.

    Article  Google Scholar 

  • Hoppel, W. A., R. V. Anderson, and J. C. Willett, Atmospheric electricity in the planetary boundary layer, in The Earth’s Electrical Environment, pp. 149–165, Natl. Acad. Press, Washington D.C., 1986.

    Google Scholar 

  • Israel, H., Atmospheric Electricity, vol. I, Fundamentals, Conductivity, and Ions. Israel Program for Sci, Transl., Jerusalem, 1970.

    Google Scholar 

  • Israel, H., Atmospheric Electricity, vol. II, Isr. Program for Sci. Transl., Jerusalem, 1973.

  • Kasemir, H. W., Measurement of the air-earth current density, in Proc. Conf. Atmos. Electricity, Geophys. Res. Pap., 42, 91–95, Air Force Cambridge Res., Cent., Bedford, Mass., 1955.

    Google Scholar 

  • Kasemir, H. W. and L. H. Ruhnke, Antenna problems of measurement of the air-Earth current, in Recent Advances in Atmospheric Electricity, edited by L. G. Smith, pp. 137–147, Pergamon, New York, 1959.

    Google Scholar 

  • Latha, R., Diurnal variation of surface electric field at a tropical station in different seasons: a study of plausible influences, Earth Planets Space, 55, 677–685, 2003.

    Article  Google Scholar 

  • Marcz, F., G. Satori, and B. Zieger, Variations in Schumann resonances and their relation to atmospheric electricity parameters at Nagycenk station, Ann. Geophys., 15, 1604–1614, 1997.

    Article  Google Scholar 

  • Mareev, E. A. and Anisimov, Global electric circuit as an open dissipative system, Proc. 12th Int. Conf. On atmospheric electricity, Versailles, vol. 2, pp 781–784, 2003.

    Google Scholar 

  • Marshall, T. C., W. D. Rust, M. Stolzenburg, W. P. Roeder, and P. R. Krehbiel, A study of enhanced fair-weather electric fields occurring soon after sunrise, J. Geophys. Res., 104, 24,455–24,469, 1999.

    Article  Google Scholar 

  • Muir, M. S., The ionosphere as the source of the atmospheric electric sunrise effect, J. Atmos. Terr. Phys., 37, 553–559, 1975.

    Article  Google Scholar 

  • Muir, M. S., The potential gradient sunrise effect in atmospheric electricity, J. Atmos. Terr. Phys., 39, 229–233, 1977.

    Article  Google Scholar 

  • Panneerselvam, C., K. U. Nair, K. Jeeva, C. Selvaraj, S. Gurubaran, and R. Rajaram, A comparative study of atmospheric Maxwell current and electric field from a low latitude station Tirunelveli, Earth Planets Space, 55, 697–703, 2003.

    Article  Google Scholar 

  • Parkinson, W. C. and O. W. Torreson, The diurnal variation of the electric potential of the atmosphere over the oceans, UGGI Bull., 8, 340–341, 1931.

    Google Scholar 

  • Prospero, J. M., Aerosol particles, in Global Tropospheric Chemistry: A plan for Action, Natl. Res. Counc., Natl. Acad. Press, Washington D.C., 1984.

    Google Scholar 

  • Reiter, R., Fields, Currents and Aerosols in the Lower Troposphere, Division of Atmospheric Sciences, National Science Foundation, Washington D. C., publ. Amerind Publishing Co. Pvt. Ltd., New Delhi, 1985.

    Google Scholar 

  • Reiter, R., Phenomena in Atmospheric and Environmental Electricity, Elsevier, 541 pp., New York, 1992.

    Google Scholar 

  • Roble, R. G., On solar-terrestrial relationships in atmospheric electricity, J. Geophys. Res., 90, 6000–6012, 1985.

    Article  Google Scholar 

  • Ruhnke, L., H., Area averaging of atmospheric electric currents, J. Geomagn. Geoelectr., 21, 453–462, 1969.

    Article  Google Scholar 

  • Rycroft, M. J., S. Israelsson, and C. Price, The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Solar-Terr. Phys., 62, 1563–1576, 2000.

    Article  Google Scholar 

  • Serbu, G. P. and E. M. Trent, A study of the use of atmospheric electric measurements in fog forecasting, Trans. Am. Geophys. UN, 39, 1034, 1958.

    Article  Google Scholar 

  • Smirnov, V. V., Ionization in the troposphere, Gidrometeoizdat, St-Petersbourg, pp. 312, 1992.

    Google Scholar 

  • Sorokin, A. E., S. V. Anisimov, and E. A., Mareev, Horizontal long-wire antenna as a fog electrical properties analyzer, Proc. of Conference on Fog and Fog Collection. St. John’s Canada, pp. 473–476, 2001.

    Google Scholar 

  • Tammet, H., S. Israelsson, E. Knudsen, and T. J. Tuomi, Effective area of a horizontal long-wire antenna collecting the atmospheric electric vertical current, J. Geophys. Res., 101, 29,671–29,677, 1996.

    Article  Google Scholar 

  • Whipple, F. j. W. and E. L. Scrase, Point discharge in the electric field of the earth, Met. Off. Geophys. Mem., London, 68, 20, 1936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Panneerselvam.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Panneerselvam, C., Nair, K.U., Selvaraj, C. et al. Diurnal variation of atmospheric Maxwell current over the low-latitude continental station, Tirunelveli, India (8.7°N, 77.8°E). Earth Planet Sp 59, 429–435 (2007). https://doi.org/10.1186/BF03352704

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352704

Key words

  • Air-earth current
  • global electric circuit
  • sunrise effect
  • atmospheric electric field