Skip to main content

Spectroscopic measurements of Si-O recombination process in laser-induced quartz vapor plumes

Abstract

The thermal dissociation of SiO2 in impact-induced vapor is very important because it controls the redox state of the vapor. However, the thermal dissociation of SiO2 and its recombination are not well understood. The present study investigates experimentally the kinetics of the Si-O recombination process at high temperatures. Laser-induced quartz vapor is observed by means of time-resolved spectroscopy, and the atomic lines of Si and molecular bands of SiO are measured in order to estimate the temperature and the column densities of Si and SiO. The results of these experiments show that Si and O recombine as the vapor cools from 5000 to 3000 K. A comparison of the observed chemical composition and equilibrium calculations suggests that the recombination reaction between Si and O proceeds rather efficiently under a condition that differs significantly from the thermo-chemical equilibrium. This result is explained well if the rate constant of the Si-O recombination process does not depend strongly on the temperature; the activation energy is very small. These results suggest that the Si-O recombination process may not be approximated by a frequently-used ‘freeze-out’ model.

References

  1. Andreazza, C. M., P. D. Singh, and G. C. Sanzovo, The radiative association of C and S, C+ and S, Si and O, and Si+ and O, Astrophys. J., 451, 889–893, 1995.

    Article  Google Scholar 

  2. Arnold, J. O., E. E. Whiting, and G. C. Lyle, Line by line calculation of spectra from diatomic molecules and atoms assuming a voigt line profile, J. Quant. Spectrosc. Radiat. Transfer, 9, 775–798, 1969.

    Article  Google Scholar 

  3. Ahrens, T. J. and J. D. O’keefe, Shock melting and vaporization of lunar rocks and minerals, Moon, 4, 214–249, 1972.

    Article  Google Scholar 

  4. Barrow, R. F. and T. J. Stone, The identification of a new band system associated with gaseous silicon monoxide, J. Phys., B8, L13–L15, 1975.

    Google Scholar 

  5. Basaltic Volcanism Study Project (BVSP), Basaltic Volcanism on the Terrestrial Planets, Pergamon, 1286 pp., New York, 1981.

    Google Scholar 

  6. Cannon, C. J., The Transfer of Spectral Line Radiation, 541 pp., Cambridge Univ. Press, New York, 1985.

    Google Scholar 

  7. Chase, M. W., Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables 3rd edition, Journal of Physical and Chemical Reference Data, 14 Supplement No. 1, 1856 pp., 1985.

    Google Scholar 

  8. Divine, N., Five populations of interplanetary meteoroids, J. Geophys. Res., 98E9, 17029–17048, 1993.

    Article  Google Scholar 

  9. Fegley, B., Jr., R. G. Prinn, H. Hartman, and G. H. Watkins, Chemical effects of large impacts on the earth’s primitive atmosphere, Nature, 319, 305–308, 1986.

    Article  Google Scholar 

  10. Griem, H. R., Plasma Spectroscopy, 580 pp., McGraw-Hill, New York, 1964.

    Google Scholar 

  11. Kadono, T., S. Sugita, N. K. Mitani, M. Fuyuki, S. Ohno, Y. Sekine, and T. Matsui, Vapor clouds generated by laser ablation and hypervelocity impact, Geophys. Res. Lett., 29(20), 1979–1982, 2002.

    Article  Google Scholar 

  12. Kubicki, J. D. and E. M. Stolper, Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations, Lunar Planet. Sci. Conf. XXIV, no. 829, 1993.

    Google Scholar 

  13. Hamano, K., S. Sugita, T. Kadono, and T. Matsui, A new method to measure the pressure of impact-induced vapor clouds, Lunar Planet. Sci. Conf. XXXIV, no. 1647, 2003.

    Google Scholar 

  14. Herzberg, G., Molecular Spectra and Molecular Structure, I, Diatomic Molecules, 2nd ed., 678 pp., D. Van Nostrand, New York, 1950.

    Google Scholar 

  15. Huber, K. P. and G. Herzberg, Molecular Spectra and Molecular Structure VI. Constants of Diatomic Molecules, 716 pp., Van Nostrand-Reinhold, New York, 1979.

    Google Scholar 

  16. Lagerqvist, A., I. Renhorn, and N. Elander, The spectrum of SiO in the vacuum ultraviolet Region, J. Molec. Spectrosc, 46, 285–315, 1973.

    Article  Google Scholar 

  17. Langhoff, S. R. and J. O. Arnold, Theoretical study of the X1+, A1, C1−, and E1+ states of the SiO molecule, J. Chem. Phys., 70(02), 853–863, 1979.

    Article  Google Scholar 

  18. Liszt, H. S. and W. H. Smith, RKR Franck-Condon factors for blue and ultraviolet transitions of some molecules of astrophysical interest and some comments on the interstellar abundance of CH, CH+ and SiH+, J. Quant. Spectrosc. Radiat. Transfer, 12, 947–958, 1972.

    Article  Google Scholar 

  19. Mitchell, A. C. G. and M. W. Zemansky, Resonance Radiation and Exited Atoms, 338 pp., Cambridge University Press, London, 1961.

    Google Scholar 

  20. Mukhin, L. M., M. V. Gerasimov, and E. N. Safonova, Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks, Nature, 340, 46–48, 1989.

    Article  Google Scholar 

  21. Park, C., High temperature reformation of aluminum and chlorine compounds behind the mach disk of a solid-fuel rocket exhaust, Atmos. Environ., 10, 693–702, 1976.

    Article  Google Scholar 

  22. Park, C. and J. O. Arnold, A shock-tube determination of the SiO(A1 Π-X1 Σ+) transition moment, J. Quant. Spectrosc. Radiat. Transfer, 19, 1–10, 1978.

    Article  Google Scholar 

  23. Park, C. S., D. R. Crosley, D. J. Eckstrom, and K. R. Heere, Measurement of the A1 Π-X1 Σ+ electronic transition moment of SiO using a shock-tube, J. Quant. Spectrosc. Radiat. Transfer, 49(4), 349–360, 1993.

    Article  Google Scholar 

  24. Penner, S. S., Quantitative Molecular Spectroscopy and Gas Emissivities, 578 pp., Addison-Wesley, London, 1959.

    Google Scholar 

  25. Sasaki, S., K. Nakamura, Y. Hamabe, E. Kurahashi, and T. Hiroi, Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, 410, 555–557, 2001.

    Article  Google Scholar 

  26. Seshadri, K. S. and R. S. Jones, The shapes and intensities of infrared absorption bands-A review, Spectrochim Acta, 19, 1013–1085, 1963.

    Article  Google Scholar 

  27. Sugita, S. and P. H. Schultz, Interaction between impact-induced vapor clouds and an atmosphere 1: Spectroscopic observation, J. Geophys. Res., 101E6, 2003.

  28. Sugita, S., P. H. Schultz, and M. A. Adams, Spectroscopic measurements of vapor clouds due to oblique impacts, J. Geophys. Res., 103E8, 19,427–19,441, 1998.

    Article  Google Scholar 

  29. Sugita, S., T. Kadono, S. Ohno, K. Hamano, and T. Matsui, Does laser ablation vapor simulate impact vapor?, Lunar Planet. Sci. Conf. XXXIV, no. 1573, 2003.

    Google Scholar 

  30. The Chemical Society of Japan, Kagaku Binran Kisohen II Kaitei 3 ban, Maruzen, 1984.

    Google Scholar 

  31. Whiting, E. E., An empirical approximation to Voight profile, J. Quant. Spectrosc. Radiat. Transfer, 8, 1379–1384, 1968.

    Article  Google Scholar 

  32. Wiese, W. L. and G. A. Martin, Wavelength and Transition Probabilities for Atoms and Atomic Ions, Part II. Transition Probabilities, 359–406, National Bureau of Standards, Washington D.C., 1980.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masanori Fuyuki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuyuki, M., Sugita, S., Kadono, T. et al. Spectroscopic measurements of Si-O recombination process in laser-induced quartz vapor plumes. Earth Planet Sp 59, 437–451 (2007). https://doi.org/10.1186/BF03352705

Download citation

Key words

  • Si-O recombination process
  • laser-induced quartz vapor plume
  • time-resolved spectroscopy
  • Si atomic lines
  • SiO molecular bands
  • chemical equilibrium calculation
  • activation energy