Skip to main content

Finite element analysis of crustal deformation in the Ou Backbone Range, northeastern Japan, with non-linear visco-elasticity and plasticity: effects of non-uniform thermal structure

Abstract

A finite element analysis with non-linear visco-elasticity and plasticity was carried out with the aim of constructing a model of the slip and deformation processes in the deeper parts of the seismogenic zones of inland earthquakes. Our finite element code is based on the GeoFEM parallel finite element code and was developed using plug-ins to adopt several non-linear functions. We consider the effects of geothermal structures in the crust in a compressional tectonic setting to model the deformation and faulting that occur around the Ou Backbone Range in northeastern Japan. We set an area of high geothermal gradient in the center of the model. The numerical results show that shortening deformation due to non-linear viscous flow occurs in the high-temperature area in the lower part of the crust, which results in shear faulting in the upper part of the crust. In the case where the crust comprises two layers—the upper crust (quartz diorite) and the lower crust (wet diabase)—a weak viscous zone appears in the lower part of the upper crust and a strong viscous or plastic zone appears at the upper part of the lower crust. Our numerical results are able to explain the deformation and faulting that occur around the Ou Backbone Range in northeastern Japan.

References

  1. Bathe, K. J., Finite Element Procedures, Prentice-Hall International, Inc., 1996.

    Google Scholar 

  2. Ellis, S. and B. Stöckhert, Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust, J. Geophys. Res., 109, B05407, doi:10.1029/2003JB002744, 2004.

    Google Scholar 

  3. Ellis, S., S. Wissing, and A. Pfiffner, Strain localization as a key to recon-cliling experimentally derived flow-law data with dynamic models of continental collision, Int. J Earth Sci., 90, 168–180, 2001.

    Article  Google Scholar 

  4. Furukawa, Y., Temperature structure in the crust of the Japan arc and the thermal effect of subduction, in Terrestrial Heat Flow and Geothermal Energy in Asia, edited by M. L. Gupta and M. Yamano, pp. 203–219, Oxford and IBH Publishers, New Dehli, 1995.

    Google Scholar 

  5. Garatani, K., H. Nakamura, H. Okuda, and G. Yagawa, High Performance Parallel FEM for Solid Earth, J. Future Generation Computer Systems, 81, 107–114, 2001a.

    Article  Google Scholar 

  6. Garatani, K., Nakajima, H. Okuda, and G. Yagawa, Three-dimensional elasto-static analysis of 100 million degrees of freedom, J. Adv. Eng. Software, 32, 511–518, 2001b.

    Article  Google Scholar 

  7. Garatani, K., B. Shibazaki, H. Tanaka, Y Iio, and H. Okuda, Inelastic crustal deformation model by FEM: coexistence of non-linear flow and plastic deformation, Programme and Abstracts, the Seismological Society of Japan, 2003, Fall Meeting, B004, 2003.

    Google Scholar 

  8. Hasegawa, A., J. Nakajima, N. Umino, and S. Miura, Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity, Tectonophysics, 403, 59–75, 2005.

    Article  Google Scholar 

  9. Holbrook, W. S., W. D. Mooney, and N. I. Christensen, The seismic velocity structure of the deep continental crust, in Continental Lower Crust, edited by D. M. Fountain, R. Arculus, and R. W. Kay, Elsevier, 1–43, Amsterdam, 1992.

    Google Scholar 

  10. Huismans, R. S., S. J. H. Buiter, and C. Beaumont, Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension, J. Geophys. Res., 110, B02406, doi:10.1029/2004JB003114, 2005.

    Google Scholar 

  11. Hyodo, M. and K. Hirahara, A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan, Earth Planets Space, 55, 667–675, 2003.

    Article  Google Scholar 

  12. Iio, Y., Frictional coefficient on faults in a seismogenic region inferred from earthquake mechanism solutions, J. Geophys. Res., 102, 5403–5412, 10.1029/96JB03593, 1997.

    Article  Google Scholar 

  13. Iio, Y. and Y. Kobayashi, A physical understanding of large intraplate earthquakes, Earth Planets Space, 54, 1001–1004, 2002.

    Article  Google Scholar 

  14. Iio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower crust and its role in the concentrated deformation in the Japanese islands, Earth Planet. Sci. Lett., 203, 245–253, 2002.

    Article  Google Scholar 

  15. Iio, Y., T. Sagiya, N. Umino, T. Nishimura, K. Takahashi, and T. Homma, A comprehensive model of the deformation process in the Nagamachi-Rifu Fault Zone, Earth Planets Space, 56, 1339–1345, 2004.

    Article  Google Scholar 

  16. Iwasaki, T., W. Kato, T. Moriya, A. Hasemi, N. Umino, T. Okada, K. Miyashita, T. Mizogami, T. Takeda, S. Sekine, T. Matsushima, K. Tashiro, and H. Miyamachi, Extensional structure in northern Honshu Arc as inferred from seismic refraction/wide-angle reflection profiling, Geophys. Res. Lett., 28, 2329–2332, 2001.

    Article  Google Scholar 

  17. Iwata, K., T. Kano, H. Atsumo, and H. Takeda, General purpose nonlinear analysis problem FINAS for elevated temperature design of FBR Components, J. Pressure Vessel Piping, 66, 119–137, 1982.

    Google Scholar 

  18. Johnston, A. C. and L. R. Kanter, Earthquakes in stable continental crust, Sci. Am., 262(3), 68–75, 1990.

    Article  Google Scholar 

  19. Kenner, S. and P. Segall, A mechanical model for intraplate earthquakes: Application to the New Madrid, Science, 289, 2329–2332, 2000.

    Article  Google Scholar 

  20. Kohlstedt, D. L., B. Evans, and S. J. Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res., 100, 17587–17602, 10.1029/95JB01460, 1995.

    Article  Google Scholar 

  21. Lavier, L. L. and W. R. Buck, Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting, J. Geophys. Res., 107, 2122, doi:10.1029/2001JB000513, 2002.

    Article  Google Scholar 

  22. Matsu’ura, M. and T. Sato, Loading mechanism and scaling relations of large interpolate earthquakes, Tectonophysics, 277, 189–198, 1997.

    Article  Google Scholar 

  23. Melosh, H. J. and A. Raefsky, The dynamical origin of subduction zone topography, Geophys. J. R.A.S., 60, 333–354, 1980.

    Article  Google Scholar 

  24. Miura, S., T. Sato, A. Hasegawa, Y. Suwa, K. Tachibana, and S. Yui, Strain concentration zone along the volcanic front derived by GPS observations in NE Japan arc, Earth Planets Space, 56, 1347–1355, 2004.

    Article  Google Scholar 

  25. Nakajima, J., T. Matsuzawa, A. Hasegawa, and D. Zhao, Three-dimensional structure of Vp, Vs and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids, J. Geophys. Res., 106, 21843–21857, 2001.

    Article  Google Scholar 

  26. Nishimoto, S., M. Ishikawa, M. Arima, and T. Yoshida, Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc, Tectonophysics, 396, 245–259, 2005.

    Article  Google Scholar 

  27. Owen, D. R. J. and E. Hinton, Finite Elements in Plasticity: Theory and Practice, Pineridge Press Limited, 1980.

    Google Scholar 

  28. Ranalli, G., Rheology of the Earth, second edition, Chapman & Hall, 1995.

    Google Scholar 

  29. Regenauer-Lieb, K., D. A. Yuen, and J. Branlund, The initiation of Subduction: Criticality by addition of water, Science, 294, 578–580, 2001.

    Article  Google Scholar 

  30. Sagiya, T., S. Miyazaki, and T. Tada, Continupus GPS arrays and present-day crustal deformation of Japan, Pure Appl. Geophys., 157, 2303–2322, 2000.

    Google Scholar 

  31. Sato, H., N. Hirata, T. Iwasaki, M. Matsubara, and T. Ikawa, Deep seismic reflection profiling across the Ou Backbone range, northern Honshu Island, Japan, Tectonophysics, 355, 41–52, 2002.

    Article  Google Scholar 

  32. Shimamoto, T., Rheology of rocks and plate tectonics, in Comprehensive Rock Engineering: Principles, Practice & Projects (volume 1), edited by J. A. Hudson, pp. 93–109, Pergamon Press, Oxford, 1993.

    Google Scholar 

  33. Tanaka, A. and Y. Ishikawa, Temperature distribution and focal depth in the crust of the northeastern Japan, Earth Planets Space, 54, 1109–1113, 2002.

    Article  Google Scholar 

  34. Tse, S. T. and J. R. Rice, Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452–9472, 1986.

    Article  Google Scholar 

  35. Tullis, T. E., F. G. Horowitz, and J. Tullis, Flow laws of polyphase aggregates from end-member flow laws, J. Geophys. Res., 96, 8081–8096, 1991.

    Article  Google Scholar 

  36. Umino, N., H. Ujikawa, S. Hori, and A. Hasegawa, Distinct S-wave reflectors (bright spots) detected beneath the Nagamachi-Rifu fault, NE Japan, Earth Planets Space, 54, 1021–1026, 2002.

    Article  Google Scholar 

  37. Yamasaki, T. and T. Seno, High strain rate zone in central Honshu resulting from the viscosity heterogeneities in the crust and mantle, Earth Planet. Sci. Lett., 232, 13–27, 2005.

    Article  Google Scholar 

  38. Zienkiewicz, O. C. and R. L. Taylor, The Finite Element Method, McGraw-Hill, 4th edition, volumes 1 and 2, 1994.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bunichiro Shibazaki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shibazaki, B., Garatani, K. & Okuda, H. Finite element analysis of crustal deformation in the Ou Backbone Range, northeastern Japan, with non-linear visco-elasticity and plasticity: effects of non-uniform thermal structure. Earth Planet Sp 59, 499–512 (2007). https://doi.org/10.1186/BF03352713

Download citation

Key words

  • GeoFEM
  • crustal deformation
  • non-linear visco-elasticity
  • plasticity
  • thermal structure
  • Ou Backbone Range