Skip to main content

True polar wander associated with continental drift on a hypothetical Earth

Abstract

Long-term true polar wander of the Earth (TPW) has generally been discussed by taking into account con-vective processes in the mantle such as downgoing slabs and upwelling plumes. Here I examined a relationship between continental drift and TPW on a hypothetical Earth with no such convective processes in the mantle. I evaluated temporal changes in moments of inertia owing to continental drift during a period of ~250 Ma based on a paleogeographic reconstruction, in which I estimated the lateral density heterogeneities by factoring in the observed mean land elevation of continents and average age of the oceanic lithosphere. The predictions for a viscoelastic Earth model with plausible viscosity models indicate that the long-term TPW might have been affected by continental drift throughout Cenozoic and Mesozoic times, which has wholly proceeded by maintaining isostasy at a certain depth, as well as convective processes in the mantle.

References

  • Besse, J. and V. Courtillot, Revised and synthetic apparent polar wander paths of the African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma, J. Geophys. Res., 96, 4029–4050, 1991.

    Article  Google Scholar 

  • Besse, J. and V. Courtillot, Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res.,107(B11), 2300, doi: 10.1029/2000JB000050, 2002.

    Article  Google Scholar 

  • Condie, K. C. and R. E. Sloan, Origin and Evolution of Earth: Principles of Historical Geology, Prentice Hall, New Jersey, 1997.

    Google Scholar 

  • Dickman, S. R., Secular trend of the Earth’s rotation pole: Consideration of motion of the latitude observatories, Geophys. J. R. Astr. Soc, 51, 229–244, 1977.

    Article  Google Scholar 

  • Dickman, S. R., Continental drift and true polar wandering, Geophys. J. R. Astr. Soc, 57, 41–50, 1979.

    Article  Google Scholar 

  • Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model (PREM), Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  • Gold, T., Instability of the Earth’s axis of rotation, Nature, 175, 526–529, 1955.

    Article  Google Scholar 

  • Goldreich, P. and A. Toomre, Some remarks on polar wandering, J. Geophys. Res., 74, 2555–2567, 1969.

    Article  Google Scholar 

  • Golonka, J., Plate-tectonic maps of the Phanerozoic, Phanerozoic Reef Patterns, in SEPM Special Publication No.72,edited by W. Kiessling, E. Flügel and J. Golonka, pp. 21–75, Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 2002.

    Google Scholar 

  • Greff-Lefftz, M., Upwelling plumes, superwells and true polar wander, Geophys. J. Int., 159, 1125–1137, 2004.

    Article  Google Scholar 

  • Hager, B. H. and R. W. Clayton, Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid, in Mantle Convection: Plate Tectonics and Global Dynamics,edited by W. R. Peltier, pp.657–763, Gordon and Breach Science Publications, New York, 1989.

    Google Scholar 

  • Harrison, C. G. A., K. J. Miskell, G. W. Brass, E. S. Saltzman, and J. L. Sloan II, Continental hypsography, Tectonics, 2, 357–377, 1983.

    Article  Google Scholar 

  • Johnston, P. and K. Lambeck, Postglacial rebound and sea level contributions to changes in the geoid and the Earth’s rotation axis, Geophys. J. Int., 136, 537–558, 1999.

    Article  Google Scholar 

  • Lambeck, K., The Earth’s Variable Rotation: Geophysical Causes and Consequences,Cambridge University Press, Oxford, 1980.

    Book  Google Scholar 

  • Lambeck, K., P. Johnston, and M. Nakada, Holocene glacial rebound and sea-level change in NW Europe, Geophys. J. Int., 103, 451–468, 1990.

    Article  Google Scholar 

  • Lemoine, F. G., S. C. Kenyon, J. K. Factor, R. G. Trimmer, N. K. Palvis, D. S. Chinn, C. M. Cox, S. M. Klosko, S. B. Luthcke, M. H. Torrence, Y. M. Wang, R. G. Williamson, E. C. Palvis, R. H. Rapp, and T. R. Olson, The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, Technical report, NASA/TP-1998-206861, 1998.

    Google Scholar 

  • McCarthy, D. D. and B. J. Luzum, Path of the mean rotational pole from 1899 to 1994, Geophys. J. Int., 12, 623–629, 1996.

    Article  Google Scholar 

  • Minster, J. B., T. H. Jordan, P. Molnar, and E. Haines, Numerical modelling of instantaneous plate tectonics, Geophys. J. R. Astr. Soc, 36, 541–576, 1974.

    Article  Google Scholar 

  • Mitrovica, J. X. and A. M. Forte, A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225, 177–189, 2004.

    Article  Google Scholar 

  • Mitrovica, J. X. and G. A. Milne, Glaciation-induced perturbations in the Earth’s rotation: A new appraisal, J. Geophys. Res., 103, 985–1005, 1998.

    Article  Google Scholar 

  • Mitrovica, J. X., J. Wahr, I. Matsuyama, and A. Paulson, The rotational stability of an ice-age earth, Geophys. J. Int., 161, 491–506, 2005.

    Article  Google Scholar 

  • Munk, W H. and G. J. F. MacDonald, The Rotation of the Earth: a Geophysical Discussion, Cambridge Univ. Press, Cambridge, 1960.

    Google Scholar 

  • Nakada, M., Polar wander caused by the Quaternary glacial cycles and fluid Love number, Earth Planet. Sci. Lett., 200, 159–166, 2002.

    Article  Google Scholar 

  • Nakada, M. and K. Lambeck, Late Pleistocene and Holocene sea-level change in the Australian region and mantle viscosity, Geophys. J., 96, 497–517, 1989.

    Article  Google Scholar 

  • Nakada, M. and J. Okuno, Perturbations of the Earth’s rotation and their implications for the present-day mass balance of both polar ice caps, Geophys. J. Int., 152, 124–138, 2003.

    Article  Google Scholar 

  • Peltier, W. R., The impulse of a Maxwell Earth, Rev. Geophys. Space Phys., 12, 649–669, 1974.

    Article  Google Scholar 

  • Peltier, W R., Glacial isostatic adjustment II, the inverse problem, Geophys. J. R. Astr. Soc, 46, 669–706, 1976.

    Article  Google Scholar 

  • Prévot, M., E. Mattern, P Camps, and M. Daignières, Evidence for a 20° tilting of the Earth’s rotation axis 110 million years ago, Earth Planet. Sci. Lett., 179, 517–528, 2000.

    Article  Google Scholar 

  • Ricard, Y. and R. Sabadini, Rotational instabilities of the Earth induced by mantle density anomalies, Geophys. Res. Lett., 17, 627–630, 1990.

    Article  Google Scholar 

  • Ricard, Y, G. Spada, and R. Sabadini, Polar wandering of a dynamic earth, Geophys. J. Int., 113, 284–298, 1993.

    Article  Google Scholar 

  • Richards, M. A., Y Ricard, C. Lithgow-Bertelloni, G. Spada, and R. Sabadini, An explanation for Earth’s long-term rotational stability, Science, 297, 372–375, 1997.

    Article  Google Scholar 

  • Richards, M. A., H. P. Bunge, Y. Ricard, and J. R. Baumgardner, Polar wandering in mantle convection models, Geophys. Res. Lett., 26, 1777–1780, 1999.

    Article  Google Scholar 

  • Sabadini, R. and W R. Peltier, Pleistocene deglaciation and the Earth’s rotation: Implications for mantle viscosity, Geophys. J. R. Astr. Soc, 66, 553–578, 1981.

    Article  Google Scholar 

  • Spada, G., Y Ricard, and R. Sabadini, Excitation of true polar wander by subduction, Nature, 360, 452–454, 1992.

    Article  Google Scholar 

  • Steinberger, B. M. and R. J. O’Connell, Changes of the Earth’s rotation axis inferred from advection of mantle density heterogeneities, Nature, 387, 169–173, 1997.

    Article  Google Scholar 

  • Steinberger, B. M. and R. J. O’Connell, The convective mantle flow signal in rates of true polar wander, Ice Sheets, Sea Level and Dynamic Earth, in Geodynamics Series 29,edited by J. X. Mitrovica and L. L. A. Vermeersen, pp. 233–256, American Geophysical Union, Washington, DC, 2002.

    Google Scholar 

  • Tarduno, J. A., R. A. Duncan, D. W. Scholl, R. C. Cottrell, B. Steinberger, T. Thordarson, B. C. Kerr, C. R. Neal, F A. Frey, M. Torii, and C. Carvallo, The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle, Science, 301, 1064–1069, 2003.

    Article  Google Scholar 

  • Turcotte, D. L. and G. Schubert, Geodynamics,Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  • Vermeersen, L. L. A. and N. J. Vlaar, Changes in the Earth’s rotation by tectonic movements, Geophys. Res. Lett., 20, 81–84, 1993.

    Article  Google Scholar 

  • Vermeersen, L. L. A., R. Sabadini, G. Spada, and N. J. Vlaar, Mountain building and Earth rotation, Geophys. J. Int., 117, 610–624, 1994.

    Article  Google Scholar 

  • Vermeersen, L. L. A. and R. Sabadini, Significance of the fundamental mantle relaxation mode in polar wander simulations, Geophys. J. Int., 127, F5–F9, 1996.

    Article  Google Scholar 

  • Watts, A. B., Isostasy and Flexure of the Lithosphere, Cambridge Univ. Press, Cambridge, 2001.

    Google Scholar 

  • Wu, P. and W. R. Peltier, Pleistocene deglaciation and the Earth’s rotation: A new analysis, Geophys. J. R. Astr. Soc, 76, 753–791, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Nakada.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Nakada, M. True polar wander associated with continental drift on a hypothetical Earth. Earth Planet Sp 59, 513–522 (2007). https://doi.org/10.1186/BF03352714

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352714

Key words

  • Earth’s rotation, true polar wander
  • continental drift
  • Maxwell viscoelasticity
  • viscosity
  • Love number