Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

True polar wander associated with continental drift on a hypothetical Earth

Abstract

Long-term true polar wander of the Earth (TPW) has generally been discussed by taking into account con-vective processes in the mantle such as downgoing slabs and upwelling plumes. Here I examined a relationship between continental drift and TPW on a hypothetical Earth with no such convective processes in the mantle. I evaluated temporal changes in moments of inertia owing to continental drift during a period of ~250 Ma based on a paleogeographic reconstruction, in which I estimated the lateral density heterogeneities by factoring in the observed mean land elevation of continents and average age of the oceanic lithosphere. The predictions for a viscoelastic Earth model with plausible viscosity models indicate that the long-term TPW might have been affected by continental drift throughout Cenozoic and Mesozoic times, which has wholly proceeded by maintaining isostasy at a certain depth, as well as convective processes in the mantle.

References

  1. Besse, J. and V. Courtillot, Revised and synthetic apparent polar wander paths of the African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma, J. Geophys. Res., 96, 4029–4050, 1991.

  2. Besse, J. and V. Courtillot, Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res.,107(B11), 2300, doi: 10.1029/2000JB000050, 2002.

  3. Condie, K. C. and R. E. Sloan, Origin and Evolution of Earth: Principles of Historical Geology, Prentice Hall, New Jersey, 1997.

  4. Dickman, S. R., Secular trend of the Earth’s rotation pole: Consideration of motion of the latitude observatories, Geophys. J. R. Astr. Soc, 51, 229–244, 1977.

  5. Dickman, S. R., Continental drift and true polar wandering, Geophys. J. R. Astr. Soc, 57, 41–50, 1979.

  6. Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model (PREM), Phys. Earth Planet. Inter., 25, 297–356, 1981.

  7. Gold, T., Instability of the Earth’s axis of rotation, Nature, 175, 526–529, 1955.

  8. Goldreich, P. and A. Toomre, Some remarks on polar wandering, J. Geophys. Res., 74, 2555–2567, 1969.

  9. Golonka, J., Plate-tectonic maps of the Phanerozoic, Phanerozoic Reef Patterns, in SEPM Special Publication No.72,edited by W. Kiessling, E. Flügel and J. Golonka, pp. 21–75, Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 2002.

  10. Greff-Lefftz, M., Upwelling plumes, superwells and true polar wander, Geophys. J. Int., 159, 1125–1137, 2004.

  11. Hager, B. H. and R. W. Clayton, Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid, in Mantle Convection: Plate Tectonics and Global Dynamics,edited by W. R. Peltier, pp.657–763, Gordon and Breach Science Publications, New York, 1989.

  12. Harrison, C. G. A., K. J. Miskell, G. W. Brass, E. S. Saltzman, and J. L. Sloan II, Continental hypsography, Tectonics, 2, 357–377, 1983.

  13. Johnston, P. and K. Lambeck, Postglacial rebound and sea level contributions to changes in the geoid and the Earth’s rotation axis, Geophys. J. Int., 136, 537–558, 1999.

  14. Lambeck, K., The Earth’s Variable Rotation: Geophysical Causes and Consequences,Cambridge University Press, Oxford, 1980.

  15. Lambeck, K., P. Johnston, and M. Nakada, Holocene glacial rebound and sea-level change in NW Europe, Geophys. J. Int., 103, 451–468, 1990.

  16. Lemoine, F. G., S. C. Kenyon, J. K. Factor, R. G. Trimmer, N. K. Palvis, D. S. Chinn, C. M. Cox, S. M. Klosko, S. B. Luthcke, M. H. Torrence, Y. M. Wang, R. G. Williamson, E. C. Palvis, R. H. Rapp, and T. R. Olson, The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, Technical report, NASA/TP-1998-206861, 1998.

  17. McCarthy, D. D. and B. J. Luzum, Path of the mean rotational pole from 1899 to 1994, Geophys. J. Int., 12, 623–629, 1996.

  18. Minster, J. B., T. H. Jordan, P. Molnar, and E. Haines, Numerical modelling of instantaneous plate tectonics, Geophys. J. R. Astr. Soc, 36, 541–576, 1974.

  19. Mitrovica, J. X. and A. M. Forte, A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225, 177–189, 2004.

  20. Mitrovica, J. X. and G. A. Milne, Glaciation-induced perturbations in the Earth’s rotation: A new appraisal, J. Geophys. Res., 103, 985–1005, 1998.

  21. Mitrovica, J. X., J. Wahr, I. Matsuyama, and A. Paulson, The rotational stability of an ice-age earth, Geophys. J. Int., 161, 491–506, 2005.

  22. Munk, W H. and G. J. F. MacDonald, The Rotation of the Earth: a Geophysical Discussion, Cambridge Univ. Press, Cambridge, 1960.

  23. Nakada, M., Polar wander caused by the Quaternary glacial cycles and fluid Love number, Earth Planet. Sci. Lett., 200, 159–166, 2002.

  24. Nakada, M. and K. Lambeck, Late Pleistocene and Holocene sea-level change in the Australian region and mantle viscosity, Geophys. J., 96, 497–517, 1989.

  25. Nakada, M. and J. Okuno, Perturbations of the Earth’s rotation and their implications for the present-day mass balance of both polar ice caps, Geophys. J. Int., 152, 124–138, 2003.

  26. Peltier, W. R., The impulse of a Maxwell Earth, Rev. Geophys. Space Phys., 12, 649–669, 1974.

  27. Peltier, W R., Glacial isostatic adjustment II, the inverse problem, Geophys. J. R. Astr. Soc, 46, 669–706, 1976.

  28. Prévot, M., E. Mattern, P Camps, and M. Daignières, Evidence for a 20° tilting of the Earth’s rotation axis 110 million years ago, Earth Planet. Sci. Lett., 179, 517–528, 2000.

  29. Ricard, Y. and R. Sabadini, Rotational instabilities of the Earth induced by mantle density anomalies, Geophys. Res. Lett., 17, 627–630, 1990.

  30. Ricard, Y, G. Spada, and R. Sabadini, Polar wandering of a dynamic earth, Geophys. J. Int., 113, 284–298, 1993.

  31. Richards, M. A., Y Ricard, C. Lithgow-Bertelloni, G. Spada, and R. Sabadini, An explanation for Earth’s long-term rotational stability, Science, 297, 372–375, 1997.

  32. Richards, M. A., H. P. Bunge, Y. Ricard, and J. R. Baumgardner, Polar wandering in mantle convection models, Geophys. Res. Lett., 26, 1777–1780, 1999.

  33. Sabadini, R. and W R. Peltier, Pleistocene deglaciation and the Earth’s rotation: Implications for mantle viscosity, Geophys. J. R. Astr. Soc, 66, 553–578, 1981.

  34. Spada, G., Y Ricard, and R. Sabadini, Excitation of true polar wander by subduction, Nature, 360, 452–454, 1992.

  35. Steinberger, B. M. and R. J. O’Connell, Changes of the Earth’s rotation axis inferred from advection of mantle density heterogeneities, Nature, 387, 169–173, 1997.

  36. Steinberger, B. M. and R. J. O’Connell, The convective mantle flow signal in rates of true polar wander, Ice Sheets, Sea Level and Dynamic Earth, in Geodynamics Series 29,edited by J. X. Mitrovica and L. L. A. Vermeersen, pp. 233–256, American Geophysical Union, Washington, DC, 2002.

  37. Tarduno, J. A., R. A. Duncan, D. W. Scholl, R. C. Cottrell, B. Steinberger, T. Thordarson, B. C. Kerr, C. R. Neal, F A. Frey, M. Torii, and C. Carvallo, The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle, Science, 301, 1064–1069, 2003.

  38. Turcotte, D. L. and G. Schubert, Geodynamics,Cambridge University Press, Cambridge, 2002.

  39. Vermeersen, L. L. A. and N. J. Vlaar, Changes in the Earth’s rotation by tectonic movements, Geophys. Res. Lett., 20, 81–84, 1993.

  40. Vermeersen, L. L. A., R. Sabadini, G. Spada, and N. J. Vlaar, Mountain building and Earth rotation, Geophys. J. Int., 117, 610–624, 1994.

  41. Vermeersen, L. L. A. and R. Sabadini, Significance of the fundamental mantle relaxation mode in polar wander simulations, Geophys. J. Int., 127, F5–F9, 1996.

  42. Watts, A. B., Isostasy and Flexure of the Lithosphere, Cambridge Univ. Press, Cambridge, 2001.

  43. Wu, P. and W. R. Peltier, Pleistocene deglaciation and the Earth’s rotation: A new analysis, Geophys. J. R. Astr. Soc, 76, 753–791, 1984.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masao Nakada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakada, M. True polar wander associated with continental drift on a hypothetical Earth. Earth Planet Sp 59, 513–522 (2007). https://doi.org/10.1186/BF03352714

Download citation

Key words

  • Earth’s rotation, true polar wander
  • continental drift
  • Maxwell viscoelasticity
  • viscosity
  • Love number