Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Evidence for an elevated 410 km discontinuity below the Luzon, Philippines region and transition zone properties using seismic stations in Taiwan and earthquake sources to the south

Abstract

P waves from earthquakes south of Taiwan, recorded by seismic stations within and around Taiwan, were used to define two average wavespeed models WPSP01 and WPSP02 for the upper mantle and transition zone below the Luzon region. Wavespeeds are characteristic of oceanic upper mantle. The 410-km discontinuity, however, appears to be elevated to about 325 km depth, based on clear identification of the travel-time branch produced by refraction within the transition zone, and estimates of its first and second derivatives with respect to distance. A plausible explanation is low temperatures within the subducted South China Sea plate. The data also imply relatively low wavespeed jumps of 0.6–1.0% and 1.1–1.5% respectively across the elevated 410-km discontinuity and a lower discontinuity at 676 km depth, and high wavespeed gradients in the transition zone. Phase-weighted stacking on a cluster of short-period seismograms with first arrival energy from within the transition zone provides independent support for the validity of the models; later arrivals are detected close to the predicted times and slownesses for energy emerging from the lowermost upper mantle and the top of the lower mantle. An additional arrival on the stacks may be caused by a localized discontinuity near 530 km depth.

References

  1. Anderson, D. L. and J. D. Bass, Mineralogy and composition of the upper mantle, Geophys. Res. Lett., 11, 637–640, 1984.

    Article  Google Scholar 

  2. Anderson, D. L. and M. N. Toksoz, Surface waves on a spherical earth, 1, upper mantle structure from Love waves, J. Geophys. Res., 68, 3483–3499, 1963.

    Article  Google Scholar 

  3. Backus, G. E. and W. F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data, Philosophical Transactions of the Royal Society of London A, 266, 187–269, 1970.

    Article  Google Scholar 

  4. Bass, J. D. and D. L. Anderson, Composition of the uppermantle: geophysical tests of two petrological models, Geophys. Res. Lett., 11, 237–240, 1984.

    Article  Google Scholar 

  5. Bass, J. D. and F. Schilling, Editorial: Introduction to special issue on phase transitions and mantle discontinuities, Phys. Earth Planet. Int., 136, 1–2, 2003.

    Article  Google Scholar 

  6. Bautista, B. C., M. L. P. Bautista, K. Oike, F. T. Wu, and R. S. Punong- bayan, A new insight on the geometry of subducting slabs in northern Luzon, Philippines, Tectonophysics, 339, 279–310, 2001.

    Article  Google Scholar 

  7. Bolt, B. A., Summary value smoothing of physical time series with unequal intervals, J. Comput. Phys., 29, 357–369, 1978.

    Article  Google Scholar 

  8. Chen, Y.-H., S. W. Roecker, and G. L. Kosarev, Elevation of the 410 km discontinuity beneath the central Tien Shan: Evidence for a detached lithosphere root, Geophys. Res. Lett., 24, 1531–1534, 1997.

    Article  Google Scholar 

  9. Chen, P.-F, B.-S. Huang, and W.-T. Liang, Evidence of a slab-subducted lithosphere beneath central Taiwan from seismic waveforms and travel times, Earth Planet. Sci. Lett.229, 61–71, 2004.

    Article  Google Scholar 

  10. Collier, J. D. and G. R. Hellfrich, Topography of the “410” and “660” km seismic discontinuities in the Izu-Bonin subduction zone, Geophys. Res. Lett., 24, 1535–1538, 1997.

    Article  Google Scholar 

  11. Cummins, P. R., B. L. N. Kennett, J. R. Bowman, and M. G. Bostock, The 520 km discontinuity?, Bull. Seism. Soc. Am., 82, 232–236, 1992.

    Google Scholar 

  12. Duffy, T. S. and D. L. Anderson, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, 1895–1912, 1989.

    Article  Google Scholar 

  13. Duffy, T. S., C.-S. Zha, R. T. Downs, H.-K. Mao, and R. J. Hemley, Elasticity of forsterite to 16 GPa and the composition of the upper mantle, Nature, 378, 170–173, 1995.

    Article  Google Scholar 

  14. Flanagan, M. P. and P. M. Shearer, Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. Geophys. Res., 103, 2673–2692, 1998.

    Article  Google Scholar 

  15. Fujisawa, H., Elastic wave velocities of forsterite and its β-spinel form and chemical boundary hypothesis for the 410-km discontinuity, J. Geophys. Res., 103, 9591–9608, 1998.

    Article  Google Scholar 

  16. Ibrahim, A. K. and O. W. Nuttli, Travel-time curves and upper mantle structure from long-period S waves, Bull Seismol. Soc. Am., 57, 1063–1092, 1967.

    Google Scholar 

  17. Ita, J. and L. Stixrude, Petrology, elasticity and composition of the mantle transition zone, J. Geophys. Res., 97, 6849–6866, 1992.

    Article  Google Scholar 

  18. Kagan, Y., Accuracy of modern global earthquake catalogs, Phys. Earth Planet. Int., 135, 173–209, 2003.

    Article  Google Scholar 

  19. Kaiho, K. and B. L. N. Kennett, Three-dimensional seismic structure beneath the Australian region from refracted wave observations, Geophys. J. Int., 142, 651–668, 2000.

    Article  Google Scholar 

  20. Kato, M. and I. Nakanishi, Upper mantle velocity structure in the western Pacific rim estimated from short-period recordings at Matsushiro Seismic Array System, Earth Planets Space, 52, 459–466, 2000.

    Article  Google Scholar 

  21. Kennett, B. L. N. (Ed.), IASPEI1991 Seismological Tables, 167 pp., Research School of Earth Sciences, Australian National University, Canberra, Australia, 1991.

    Google Scholar 

  22. Kim, K.-H., J.-M. Chiu, H. Kao, Q. Liu, and Y.-H. Yeh, A preliminary study of crustal structure in Taiwan region using receiver function analysis, Geophys. J. Int., 159, 146–164, 2004.

    Article  Google Scholar 

  23. Li, B., R. C. Liebermann, and D. J. Weidner, Elastic moduli of wadsleyite (\-Mg2SiO4) to 7 gigapascals and 873 kelvin, Science, 281, 675–677, 1998.

    Article  Google Scholar 

  24. Li, X., S. V. Sobolev, R. Kind, X. Yuan, and C. Estabrook, A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone, Earth Planet. Sci. Lett., 183, 527–541, 2000.

    Article  Google Scholar 

  25. Ma, K.-F., J.-H. Wang, and D. Zhao, Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85–105, 1996.

    Article  Google Scholar 

  26. Negredo, A. M., J. L. Valera, and E. Carminati, TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations, Computers and Geosciences, 30, 249–258, 2004.

    Article  Google Scholar 

  27. Niazi, M. and D. L. Anderson, Upper mantle structure of western North America from apparent velocities of P waves, J. Geophys. Res., 70, 4633–4640, 1965.

    Article  Google Scholar 

  28. Nishihara, Y and E. Takahashi, Phase relation and physical properties of Al-depleted komatiite to 23 GPa, Earth Planet. Sci. Lett., 190, 65–77, 2001.

    Article  Google Scholar 

  29. Nowack, R. L., E. Ay, W.-P Chen, and B.-S. Huang, A seismic profile of the upper mantle along the south western edge of the Philippine Sea plate using short-period array data, Geophys, J. Int., 136, 171–179, 1999.

    Article  Google Scholar 

  30. Okamoto, K. and S. Maruyama, The eclogite-garnetite transformation in the MORB + H2O system, Phys. Earth Planet. Int., 146, 283–296, 2004.

    Article  Google Scholar 

  31. Ram, A. and R. F. Mereu, Lateral variations in upper mantle structure around India as obtained from Gauribidanur seismic array data, Geophys. J. R. Astron. Soc, 49, 87–113, 1977.

    Article  Google Scholar 

  32. Revenaugh, J. S. and T. H. Jordan, Mantle layering from ScS reverberation, 2, The transition zone, J Geophys. Res., 103, 2673–2692, 1991.

    Google Scholar 

  33. Ringwood, A. E., A model for the upper mantle, J. Geophys. Res., 67, 857–867, 1962.

    Article  Google Scholar 

  34. Ringwood, A. E., Phase transformations and their bearing on the constitution and dynamics of the mantle, Geochimica et Cosmochimica Acta, 55, 2083–2110, 1991.

    Article  Google Scholar 

  35. Schimmel, M. and H. Paulssen, Noise reduction and detection of weak, coherent signals though phase-weighted stacks, Geophys. J. Int., 130, 497–505, 1997.

    Article  Google Scholar 

  36. Schmeling, H., R. Monz, and D. C. Rubie, The influence of olivine metastability on the dynamics of subduction, Earth Planet. Sci. Lett., 165, 55–66, 1999.

    Article  Google Scholar 

  37. Shearer, P. M., Seismic imaging of upper mantle structure with new evidence for a 520-km discontinuity, Nature, 344, 121–126, 1990.

    Article  Google Scholar 

  38. Shearer, P., Introduction to Seismology, 260 pp., Cambridge University Press, Cambridge, U.K., 1999.

    Google Scholar 

  39. Shearer, P. M. and M. P. Flanagan, Seismic velocity and density jumps across the 410- and 660-kilometer discontinuities, Science, 285, 1545–1548, 1999.

    Article  Google Scholar 

  40. Simon, R. E., C. Wright, E. M. Kgaswane, and M. T. O. Kwadiba, The P wavespeed structure below and around the Kaapvaal craton to depths of 800 km, from traveltimes and waveforms of local and regional earthquakes and mining-induced tremors, Geophys. J. Int., 151, 132–145, 2002.

    Article  Google Scholar 

  41. Simon, R. E., C. Wright, M. T. O. Kwadiba, and E. M. Kgaswane, Mantle structure and composition to 800-km depth beneath southern Africa and surrounding oceans from broadband body waves, Lithos Special Issue: The Slave-Kaapvaal Workshop: A Tale of Two Cratons, edited by A. G. Jones, R. W. Carlson, and H. Grutter, 71, 353–367, 2003.

    Google Scholar 

  42. Simpson, D. W., R. F. Mereu, and D. W. King, An array study of P wave velocities in the upper mantle transition zone beneath northwestern Australia, Bull. Seismol. Soc. Am., 64, 1757–1788, 1974.

    Google Scholar 

  43. Sinogeikin, S. V., J. D. Bass, and T. Katsura, Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km discontinuity, Phys. Earth Planet. Int., 136, 41–66, 2003.

    Article  Google Scholar 

  44. Vidale, J. E. and H. M. Benz, Upper-mantle seismic discontinuities and the thermal structure of subduction zones, Nature, 356, 678–683, 1992.

    Article  Google Scholar 

  45. Vinnik, L., Detection of waves converted from P to SV in the mantle, Phys. Earth Planet. Int., 15, 39–45, 1977.

    Article  Google Scholar 

  46. Walck, M. C., The P wave upper mantle structure beneath an active spreading center: the Gulf of California, Geophys. J. R. Astron. Soc., 76, 697–723, 1984.

    Article  Google Scholar 

  47. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans. Am. Geophys U., 76, 329, 1995.

    Article  Google Scholar 

  48. Wiggins, R. A., G. A. McMechan, and M. N. Toksöz, Range of earth structure nonuniqueness implied by body wave observations, Rev. Geophys. and Space Phys., 11, 87–113, 1973.

    Article  Google Scholar 

  49. Wright, C., The LSDARC method of seismic refraction analysis: principles, practical considerations and advantages, Near Surface Geophysics, 4, 187–200, 2006.

    Article  Google Scholar 

  50. Wright, C., The P wavespeed structure in the upper mantle and transition zone below the western margin of the Philippine Sea plate; geodynamic implications, Tectonophysics, 2007 (in press).

    Google Scholar 

  51. Wright, C., K. J. Muirhead, and A. E. Dixon, The P wave velocity structure near the base of the mantle, J. Geophys. Res., 90, 623–634, 1985.

    Article  Google Scholar 

  52. Wright, C., M. T. O. Kwadiba, E. M. Kgaswane, and R. E. Simon, The structure of the crust and upper mantle to depths of 320 km beneath the Kaapvaal craton, from P wave arrivals generated by regional earthquakes and mining-induced tremors, J. Afr. Earth Sci., 35, 477–488, 2002.

    Article  Google Scholar 

  53. Yang, T.-F., T. Lee, C.-H. Chen, S.-N. Cheng, U. Knittel, R. S. Punong-bayan, and A. R. Rasdas, A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics, 258, 85–101, 1996.

    Article  Google Scholar 

  54. Zhao, M., C. A. Langston, and A. A. Nyblade, Upper mantle velocity structure beneath southern Africa from modeling regional seismic data, J. Geophys. Res., 104, 4783–4794, 1999.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Wright.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wright, C., Kuo, B. Evidence for an elevated 410 km discontinuity below the Luzon, Philippines region and transition zone properties using seismic stations in Taiwan and earthquake sources to the south. Earth Planet Sp 59, 523–539 (2007). https://doi.org/10.1186/BF03352715

Download citation

Key words

  • Philippine Sea plate
  • Luzon
  • upper mantle
  • transition zone