Skip to main content

Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to tsunami earthquakes

Abstract

Recently, we developed a new method to determine earthquake magnitudes using durations of high frequency energy radiation and the maximum displacement amplitudes, which can be measured from processing of first arriving P-waves. In the present study, we applied this method to the 1992 Nicaragua, 1994 Java, 1996 Peru, and 2006 Java earthquakes which have been suggested to be “tsunami earthquakes.” Our magnitude estimates for these earthquakes are consistent with the moment magnitudes in the Global CMT catalog, which demonstrates that our method is applicable to tsunami earthquakes. The analyzed tsunami earthquakes are characterized in our method as those with longer source durations and smaller displacement amplitudes.

References

  • Abe, K., Size of great earthquakes of 1837-1974 inferred from tsunami data, J. Geophys.Res., 84, 1561–1568, 1979.

    Article  Google Scholar 

  • Abe, K., Physical size of tsunamigenic earthquakes of the northwestern Pacific, Phys. Earth Planet. Inter., 27, 194–205, 1981.

    Article  Google Scholar 

  • Abe, K., Tsunami Magnitude of the 21 February 1996 Peru event; E-mail communication via the tsunami bulletin board, 1996.

    Google Scholar 

  • Abercrombie, R. E., M. Antolik, K. Felzer, and G. Ekström, The 1994 Java tsunami earthquake: Slip over a subducting seamount, J. Geophys. Res., 106, 6595–6608, 2001.

    Article  Google Scholar 

  • Ammon, C. J., H. Kanamori, T. Lay, and A. A. Velasco, The 17 July 2006 Java Tsunami Earthquake, Geophys. Res. Lett., 33, L24308, doi:10. 1029/2006GL028005, 2006.

    Article  Google Scholar 

  • Bormann, P. and K. Wylegalla, Quick Estimator of the Size of Great Earthquakes, Eos Trans. AGU, 86(46), 464, 2005.

    Article  Google Scholar 

  • Bourgeois J., C. Petroff, H. Yeh, V. Titov, C. E. Synolakis, B. Benson, J. Kuroiwa, J. Lander, and E. Norabuena, Geologic Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996, Pure Appl. Geophys., 154, 513–540, 1999.

    Article  Google Scholar 

  • Chen, Y, J. Huang, S. Ni, and Y Chen, Slow rupture velocity of the July 17th, 2006 Java earthquake from high frequency analysis, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract S21A–0128, 2006.

    Google Scholar 

  • Fujii Y and K. Satake, Source of the July 2006 West Java Tsunami Estimated from Tide Gauge Records, Geophys. Res. Lett., 33, L24317, doi:10.1029/2006GL028049, 2006.

    Article  Google Scholar 

  • Hara, T., Measurement of duration of high-frequency energy radiation and its application to determination of magnitudes of large shallow earthquakes, Earth Planets Space, 59, 227–231, 2007.

    Article  Google Scholar 

  • Ide, S., F Imamura, Y. Yoshida, and K. Abe, Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992, Geophys. Res. Lett., 20, 863–866, 1

    Article  Google Scholar 

  • Ihmlé, P. F, Monte Carlo slip inversion in the frequency domain: Application to the 1992 Nicaragua slow earthquake, Geophys. Res. Lett., 23, 913–916, 1996.

    Article  Google Scholar 

  • Ihmlé, P. F, J.-M. Gomez, P. Heinrich, and S. Guibourg, The 1996 Peru tsunamigenic earthquake: broadband source process, Geophys. Res. Lett., 25, 2691–2694, 1998.

    Article  Google Scholar 

  • Ji, C, http://neic.usgs.gov/neis/eq_depot/2006/eq_060717_qgaf/neic_qgaf_ff.html, 2006.

  • Kanamori, H., Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter., 6, 346–359, 1972.

    Article  Google Scholar 

  • Kanamori, H. and M. Kikuchi, The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments, Nature, 361, 714–716, 1993.

    Article  Google Scholar 

  • Kennett, B. L. N. and E. R. Engdahl, Traveltimes for Global Earthquake Location and Phase Identification, Geophys. J. Int., 105, 429–465, 1991.

    Article  Google Scholar 

  • Kikuchi, M. and H. Kanamori, Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves, Pure Appl. Geophys., 144, 441–453, 1995.

    Article  Google Scholar 

  • Lomax, A., Rapid estimation of rupture extent for large earthquakes: Application to the 2004, M9 Sumatra-Andaman mega-thrust, Geophys. Res. Lett., 32, L10314, doi:10.1029/2005GL022437, 2005.

    Article  Google Scholar 

  • Lomax, A. and A. Michelini, Rapid determination of earthquake size for hazard warning, Eos Trans. AGU, 86(21), 202, 2005.

    Article  Google Scholar 

  • Lomax, A., A. Michelini, and A. Piatanesi, An Energy-Duration Procedure for Rapid, Robust and Accurate Determination of Earthquake Magnitude and Tsunamigenic Potential: Application to the 26 December 2004, Sumatra-Andaman, 17 July 2006, Java and other large earthquakes, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract S21A–0131, 2006.

    Google Scholar 

  • Menke, W. and V. Levin, A strategy to rapidly determine the magnitude of great earthquakes, Eos Trans. AGU, 86(19), 185, 2005.

    Article  Google Scholar 

  • Newman A. V. and E. A. Okal, Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes, J. Geophys. Res., 103, 26885–26898, 1998.

    Article  Google Scholar 

  • Ni, S., H. Kanamori, and D. Helmberger, Energy radiation from the Sumatra earthquake, Nature, 434, 582, 2005.

    Article  Google Scholar 

  • Okal, E. A. and J. Talandier, Mm: A variable-period mantle magnitude, J. Geophys. Res., 94, 4169–4193, 1989.

    Article  Google Scholar 

  • Park, J., R. Butler, K. Anderson, J. Berger, H. Benz, P. Davis, C. R. Hutt, C. S. McCreery, T. Ahern, G. Ekström, and R. Aster, Performance review of the global seismographic network for the Sumatra-Andaman megathrust earthquake, Seism. Res. Lett., 76, 331–343, 2005a.

    Article  Google Scholar 

  • Park, J., K. Anderson, R. Aster, R. Butler, T. Lay, and D. Simpson, Global seismographic network records the great Sumatra-Andaman earthquake, Eos Trans. AGU, 86(6), 57, 2005b.

    Article  Google Scholar 

  • Polet J. and H. Kanamori, Shallow subduction zone earthquakes and their tsunamigenic potential, Geophys. J. Int., 142, 684–702, 2000.

    Article  Google Scholar 

  • Shearer, P. M. and P. S. Earle, The global short-period wavefield modelled with a Monte Carlo seismic phonon method, Geophys. J. Int., 158, 1103–1117, 2004.

    Article  Google Scholar 

  • Tsuboi, S., Application of Mwp to tsunami earthquake, Geophys. Res. Lett., 27, 3105–3108, 2000.

    Article  Google Scholar 

  • Tsuboi, S., K. Abe, K. Takano, and Y. Yamanaka, Rapid Determination of Mw from Broadband P Waveforms, Bull. Seism. Soc. Am., 85, 606–613, 1995.

    Google Scholar 

  • Tsuboi, S., P. M. Whitmore, and T. J. Sokolowski, Application of Mwp to Deep and Teleseismic Earthquakes, Bull. Seism. Soc. Am., 89, 1345–1351, 1999.

    Google Scholar 

  • Velasco, A. A., C. J. Ammon, T. Lay, and J. Zhang, Imaging a slow bilateral rupture with broadband seismic waves: The September 2, 1992 Nicaraguan tsunami earthquake, Geophys. Res. Lett., 21, 2629–2632, 1994.

    Article  Google Scholar 

  • Weinstein, S. A. and E. A. Okal, The Mantle Magnitude Mm and the Slowness Parameter Θ: Five Years of Real-Time Use in the Context of Tsunami Warning, Bull. Seism. Soc. Am., 95, 779–799, 2005.

    Article  Google Scholar 

  • Yagi, Y, http://www.geo.tsukuba.ac.jp/press_HP/yagi/EQ/20060717Jawa/index.html, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Hara.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Hara, T. Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to tsunami earthquakes. Earth Planet Sp 59, 561–565 (2007). https://doi.org/10.1186/BF03352718

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352718

Key words

  • Magnitude
  • tsunami earthquake
  • high frequency energy radiation