Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Development of airglow temperature photometers with cooled-CCD detectors


We have developed three airglow temperature photometers with cooled-CCD detectors. The photometers measure rotational temperatures using the airglow emissions of OH and O2 near the mesopause region (altitude: 80s-100 km). The photometers also measure six other airglow and auroral lines at wavelengths of 557.7, 630.0, 777.4, 589.3, 427.8, and 486.1 nm. The CCD detectors are used to distinguish the emission lines in these airglow bands, similarly to those used by the Spectral Airglow Temperature Imagers (SATI). In this paper, we describe the configuration of the photometers, their calibration, the data processing to extract rotational temperatures and emission intensities from the measured airglow spectra, as well as the initial deployment at Platteville, Colorado (40.2°N, 255.3°E), when their observations were compared with the concurrent and nearly collocated observations by a sodium lidar. We obtain a good correlation and some systematic difference of temperatures from the photometers and the lidar, and discuss possible causes of the temperature difference.


  1. Chamberlain, J., Physics of the aurora and airglow, Academic Press, New York, 1961.

  2. Cho, Y.-M. and G. G. Shepherd, Correlation of airglow temperature and emission rate at Resolute Bay (74.68°N), over four winters (2001–2005), Geophys. Res. Lett., 33, L06815, doi:10.1029/2005GL025298, 2006.

  3. Cho, Y.-M., G. G. Shepherd, Y.-I. Won, S. Sargoytchev, S. Brown, and B. Solheim, MLT cooling during stratospheric warming events, Geophys. Res. Lett., 31, L10104, doi:10.1029/2004GL019552, 2004.

  4. Coxon, J. A. and S. C. Foster, Rotational analyses of hydroxyl vibration-rotation emission bands: Molecular constants for OH X2π (6 < v < 10), Can. J. Phys., 60, 41–48, 1982.

  5. French, W. J. R., G. B. Burns, K. Finlayson, P. A. Greet, R. P. Lowe, and P. F. B. Williams, Hydroxyl (6,2) airglow emission intensity ratios for rotational temperature determination, Ann. Geophys., 18, 1293–1303, 2000.

  6. Fujii, J., T. Nakamura, T. Tsuda, and K. Shiokawa, Comparison of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations, J. Atmos. Solar-Terr. Phys., 66, 573–583, 2004.

  7. Gavrilyeva, G. A. and P. P. Ammosov, Near-mesopause temperatures registered over Yakutia, Journal of Atmos. Solar-Terr. Phys., 64 985–990, 2002.

  8. Greet, P. A., W. J. R. French, G. B. Burns, P. F. B. Williams, R. P. Lowe, and K. Finlayson, OH(6-2) spectra and rotational temperature measurements at Davis, Antarctica, Ann. Geophys., 16, 77–89, 1998.

  9. Krupenie, P. H., The spectrum of molecular oxygen, J. Phys. Chem.,ref. data 1: 423–487, 1972.

  10. Langhoff, S. R., H.-J. Werner, and P. Rosmus, Theoretical transition for the OH Meinel system, J. Mol. Spectrosc, 118, 507–529, 1986.

  11. López-González, M. J., E. Rodriguez, R. H. Wiens, G. G. Shepherd, S. Sargoytchev, S. Brown, M. G. Shepherd, V. M. Aushev, J. J. López-Moreno, R. Rodrigo, and Y.-M. Cho, Seasonal variations of O2 atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations, Ann. Geophys, 22, 819–828, 2004.

  12. Meinel, A. B., O2 emission bands in the infrared spectrum of the night sky, Astrophys. J., 112, 464–468, 1950.

  13. Melo, S. M. L., R. P. Lowe, W R. Pendleton, M. J. Taylor, B. P. Williams, and C. Y. She, Effects of a large mesospheric temperature enhancement on the hydroxyl rotational temperature as observed from the ground, J. Geophys. Res., 106, 30,381–30,388, 2001.

  14. Meriwether, J. W., High-latitude airglow observations of correlated short-term fluctuations in the Hydroxyl Meinel 8-3 band intensity and rotational temperature, Planet. Space Sci., 23, 1211–1221, 1975.

  15. Mies, F. H., Calculated vibrational transition probabilities of OH(X2II), J. Mol. Spectr, 53, 150–188, 1974.

  16. Osterbrock, D. E., R. T. Waters, and T. A. Barlow, Faint emission lines in the blue and red spectral regions of the night airglow, Publ. Astron. Soc. Pacific, 112, 733–741, 2000;

  17. Pendleton, W. R., Jr. and M. J. Taylor, The impact of L-uncoupling on Einstein coefficients for the OH Meinel (6,2) band: Implications for Q-branch rotational temperatures, J. Atmos. Solar-Terr Phys., 64, 971–983, 2002.

  18. Pendleton, W R., P. J. Epsy, and M. R. Hammond, Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow, J. Geophys. Res., 98, 11,567–11,579, 1993.

  19. Sargoytchev, S. I., S. Brown, B. H. Solheim, Y.-M. Cho, G. G. Shepherd, and M. J. López-González, Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature, Appl. Opt., 43, No. 30, 5712–5721, 2004.

  20. She, C. Y and R. P. Lowe, Seasonal temperature variations in the mesopause region at mid-latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles, J. Atmos. Solar-Terr Phys., 60, 1573–1583, 1998.

  21. She, C. Y, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km)over Fort Collins, CO (41°N, 105°W), Geophys. Res. Lett., 27, 3289–3292, 2000.

  22. She, C. Y., T. Li, B. P. Williams, T. Yuan, and R. H. Picard, Concurrent OH imager and sodium temperature/wind lidar observation of a mesopause region undular bore event over Fort Collins/Platteville, Colorado, J. Geophys. Res., 109, D22107, doi:10.1029/2004JD004742, 2004.

  23. Shiokawa, K., Y. Otsuka, T. Ogawa, H. Takahashi, T. Nakamura, and T. Shimomai, Comparison of OH rotational temperatures measured by the Spectral Airglow Temperature Imager (SATI) and by a tilting-filter photometer, J. Atmos. Solar-Terr Phys., 66, 891–897, 2004.

  24. Sigernes, F., N. Shumilov, C. S. Deehr, K. P. Nielsen, T. Svenoe, and O. Havnes, Hydroxyl rotational temperature record from the auroral station in Adventdalen, Svalbard (78°N, 15°E), J. Geophys. Res., 108(A9), 1342, doi:10.1029/2001JA009023, 2003.

  25. Slanger, T. G., P. C. Cosby, and D. L. Huestis, Ground-based observation of high-altitude, high-temperature emission in the O2 atmospheric band nightglow, J. Geophys. Res., 108(A7), 1293, doi: 10.1029/2003JA009885, 2003.

  26. Takahashi, H., T. Nakamura, T. Tsuda, R. A. Buriti, and D. Gobbi, First measurement of atmospheric density and pressure by meteor diffusion coefficient and airglow OH temperature in the mesopause region, Geophys. Res. Lett., 29(8), 1165, doi:10.1029/2001GL014101, 2002.

  27. Taori, A., M. J. Taylor, and S. Franke, Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20°N), J. Geophys. Res., 110, D09S06, doi:10.1029/2004JD004564, 2005.

  28. Taylor, M. J., Jr., H.-L. Liu, C. Y She, L. C. Gardner, R. G. Roble, and V. Vasoli, Large amplitude perturbations in mesospheric OH Meinel and 87-km Na lidar temperatures around the autumnal equinox, Geophys. Res. Lett., 28(9), 1899–1902, 2001.

  29. Tinsley, B. A., R. P. Rohrbaugh, H. Rassoul, E. S. Barker, A. L. Cochran, W. D. Cochran, B. J. Wills, D. W. Wills, and D. Slater, Spectral characteristics of two types of low latitude aurorae, Geophys. Res. Lett., 11, 572–575, 1984.

  30. Turnbull, D. N. and R. P. Lowe, New hydroxyl transition probabilities and their importance in airglow studies, Planet. Space Sci., 37(6), 723–738, 1989.

  31. Wiens, R. H., S.-P. Zhang, R. N. Peterson, and G. G. Shepherd, MORTI: A mesopause oxygen rotational temperature imager, Planet. Space Sci., 39, 1363–1375, 1991.

  32. Wiens, R. H., A. Moise, S. Brown, S. Sargoytchev, R. N. Peterson, G. G. Shepherd, M. J. López-González, J. J. López-Moreno, and R. Rodrigo, SATI: A spectral airglow temperature imager, Adv. Space Res., 19, 677–680, 1997.

  33. Won, Y.-I., Q. Wu, Y. M. Cho, G. G. Shepherd, T. L. Killeen, P. J. Espy, Y. Kim, and B. Solheim, Polar cap observations of mesospheric and lower thermospheric 4-hour waves in temperature, Geophys. Res. Lett., 30(7), 1377, doi:10.1029/2002GL016364, 2003.

  34. Zhang, S. P. and G. G. Shepherd, The influence of the diurnal tide on the O( S) and OH emission rates observed by WINDII on UARS, Geophys. Res. Lett., 26, 529–532, 1999.

  35. Zhang, S. P., R. H. Wiens, and G. G. Shepherd, Gravity waves from O2 nightglow during the AIDA ’89 campaign II: numerical modeling of the emission rate/temperature ratio, η, J. Atmos. Terr. Phys., 55, 377–395, 1993.

  36. Zhao, Y., M. J. Taylor, and X. Chu, Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights, J. Geophys. Res., 110, D09S07, doi:10.1029/2004JD005115, 2005.

Download references

Author information



Corresponding author

Correspondence to K. Shiokawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shiokawa, K., Otsuka, Y., Suzuki, S. et al. Development of airglow temperature photometers with cooled-CCD detectors. Earth Planet Sp 59, 585–599 (2007).

Download citation

Key words

  • Airglow temperature photometers
  • airglow emissions
  • rotational temperature
  • cooled CCD
  • mesopause region