Skip to main content

Development of airglow temperature photometers with cooled-CCD detectors

Abstract

We have developed three airglow temperature photometers with cooled-CCD detectors. The photometers measure rotational temperatures using the airglow emissions of OH and O2 near the mesopause region (altitude: 80s-100 km). The photometers also measure six other airglow and auroral lines at wavelengths of 557.7, 630.0, 777.4, 589.3, 427.8, and 486.1 nm. The CCD detectors are used to distinguish the emission lines in these airglow bands, similarly to those used by the Spectral Airglow Temperature Imagers (SATI). In this paper, we describe the configuration of the photometers, their calibration, the data processing to extract rotational temperatures and emission intensities from the measured airglow spectra, as well as the initial deployment at Platteville, Colorado (40.2°N, 255.3°E), when their observations were compared with the concurrent and nearly collocated observations by a sodium lidar. We obtain a good correlation and some systematic difference of temperatures from the photometers and the lidar, and discuss possible causes of the temperature difference.

References

  • Chamberlain, J., Physics of the aurora and airglow, Academic Press, New York, 1961.

    Google Scholar 

  • Cho, Y.-M. and G. G. Shepherd, Correlation of airglow temperature and emission rate at Resolute Bay (74.68°N), over four winters (2001–2005), Geophys. Res. Lett., 33, L06815, doi:10.1029/2005GL025298, 2006.

    Google Scholar 

  • Cho, Y.-M., G. G. Shepherd, Y.-I. Won, S. Sargoytchev, S. Brown, and B. Solheim, MLT cooling during stratospheric warming events, Geophys. Res. Lett., 31, L10104, doi:10.1029/2004GL019552, 2004.

    Article  Google Scholar 

  • Coxon, J. A. and S. C. Foster, Rotational analyses of hydroxyl vibration-rotation emission bands: Molecular constants for OH X2π (6 < v < 10), Can. J. Phys., 60, 41–48, 1982.

    Article  Google Scholar 

  • French, W. J. R., G. B. Burns, K. Finlayson, P. A. Greet, R. P. Lowe, and P. F. B. Williams, Hydroxyl (6,2) airglow emission intensity ratios for rotational temperature determination, Ann. Geophys., 18, 1293–1303, 2000.

    Google Scholar 

  • Fujii, J., T. Nakamura, T. Tsuda, and K. Shiokawa, Comparison of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations, J. Atmos. Solar-Terr. Phys., 66, 573–583, 2004.

    Article  Google Scholar 

  • Gavrilyeva, G. A. and P. P. Ammosov, Near-mesopause temperatures registered over Yakutia, Journal of Atmos. Solar-Terr. Phys., 64 985–990, 2002.

    Article  Google Scholar 

  • Greet, P. A., W. J. R. French, G. B. Burns, P. F. B. Williams, R. P. Lowe, and K. Finlayson, OH(6-2) spectra and rotational temperature measurements at Davis, Antarctica, Ann. Geophys., 16, 77–89, 1998.

    Article  Google Scholar 

  • Krupenie, P. H., The spectrum of molecular oxygen, J. Phys. Chem.,ref. data 1: 423–487, 1972.

    Google Scholar 

  • Langhoff, S. R., H.-J. Werner, and P. Rosmus, Theoretical transition for the OH Meinel system, J. Mol. Spectrosc, 118, 507–529, 1986.

    Article  Google Scholar 

  • López-González, M. J., E. Rodriguez, R. H. Wiens, G. G. Shepherd, S. Sargoytchev, S. Brown, M. G. Shepherd, V. M. Aushev, J. J. López-Moreno, R. Rodrigo, and Y.-M. Cho, Seasonal variations of O2 atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations, Ann. Geophys, 22, 819–828, 2004.

    Article  Google Scholar 

  • Meinel, A. B., O2 emission bands in the infrared spectrum of the night sky, Astrophys. J., 112, 464–468, 1950.

    Article  Google Scholar 

  • Melo, S. M. L., R. P. Lowe, W R. Pendleton, M. J. Taylor, B. P. Williams, and C. Y. She, Effects of a large mesospheric temperature enhancement on the hydroxyl rotational temperature as observed from the ground, J. Geophys. Res., 106, 30,381–30,388, 2001.

    Article  Google Scholar 

  • Meriwether, J. W., High-latitude airglow observations of correlated short-term fluctuations in the Hydroxyl Meinel 8-3 band intensity and rotational temperature, Planet. Space Sci., 23, 1211–1221, 1975.

    Article  Google Scholar 

  • Mies, F. H., Calculated vibrational transition probabilities of OH(X2II), J. Mol. Spectr, 53, 150–188, 1974.

    Article  Google Scholar 

  • Osterbrock, D. E., R. T. Waters, and T. A. Barlow, Faint emission lines in the blue and red spectral regions of the night airglow, Publ. Astron. Soc. Pacific, 112, 733–741, 2000; http://crvax.sri.com/NVAO/download/Osterbrock.html.

    Article  Google Scholar 

  • Pendleton, W. R., Jr. and M. J. Taylor, The impact of L-uncoupling on Einstein coefficients for the OH Meinel (6,2) band: Implications for Q-branch rotational temperatures, J. Atmos. Solar-Terr Phys., 64, 971–983, 2002.

    Article  Google Scholar 

  • Pendleton, W R., P. J. Epsy, and M. R. Hammond, Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow, J. Geophys. Res., 98, 11,567–11,579, 1993.

    Article  Google Scholar 

  • Sargoytchev, S. I., S. Brown, B. H. Solheim, Y.-M. Cho, G. G. Shepherd, and M. J. López-González, Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature, Appl. Opt., 43, No. 30, 5712–5721, 2004.

    Article  Google Scholar 

  • She, C. Y and R. P. Lowe, Seasonal temperature variations in the mesopause region at mid-latitude: Comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH Height profiles, J. Atmos. Solar-Terr Phys., 60, 1573–1583, 1998.

    Article  Google Scholar 

  • She, C. Y, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km)over Fort Collins, CO (41°N, 105°W), Geophys. Res. Lett., 27, 3289–3292, 2000.

    Article  Google Scholar 

  • She, C. Y., T. Li, B. P. Williams, T. Yuan, and R. H. Picard, Concurrent OH imager and sodium temperature/wind lidar observation of a mesopause region undular bore event over Fort Collins/Platteville, Colorado, J. Geophys. Res., 109, D22107, doi:10.1029/2004JD004742, 2004.

    Article  Google Scholar 

  • Shiokawa, K., Y. Otsuka, T. Ogawa, H. Takahashi, T. Nakamura, and T. Shimomai, Comparison of OH rotational temperatures measured by the Spectral Airglow Temperature Imager (SATI) and by a tilting-filter photometer, J. Atmos. Solar-Terr Phys., 66, 891–897, 2004.

    Article  Google Scholar 

  • Sigernes, F., N. Shumilov, C. S. Deehr, K. P. Nielsen, T. Svenoe, and O. Havnes, Hydroxyl rotational temperature record from the auroral station in Adventdalen, Svalbard (78°N, 15°E), J. Geophys. Res., 108(A9), 1342, doi:10.1029/2001JA009023, 2003.

    Article  Google Scholar 

  • Slanger, T. G., P. C. Cosby, and D. L. Huestis, Ground-based observation of high-altitude, high-temperature emission in the O2 atmospheric band nightglow, J. Geophys. Res., 108(A7), 1293, doi: 10.1029/2003JA009885, 2003.

    Article  Google Scholar 

  • Takahashi, H., T. Nakamura, T. Tsuda, R. A. Buriti, and D. Gobbi, First measurement of atmospheric density and pressure by meteor diffusion coefficient and airglow OH temperature in the mesopause region, Geophys. Res. Lett., 29(8), 1165, doi:10.1029/2001GL014101, 2002.

    Article  Google Scholar 

  • Taori, A., M. J. Taylor, and S. Franke, Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20°N), J. Geophys. Res., 110, D09S06, doi:10.1029/2004JD004564, 2005.

    Google Scholar 

  • Taylor, M. J., Jr., H.-L. Liu, C. Y She, L. C. Gardner, R. G. Roble, and V. Vasoli, Large amplitude perturbations in mesospheric OH Meinel and 87-km Na lidar temperatures around the autumnal equinox, Geophys. Res. Lett., 28(9), 1899–1902, 2001.

    Article  Google Scholar 

  • Tinsley, B. A., R. P. Rohrbaugh, H. Rassoul, E. S. Barker, A. L. Cochran, W. D. Cochran, B. J. Wills, D. W. Wills, and D. Slater, Spectral characteristics of two types of low latitude aurorae, Geophys. Res. Lett., 11, 572–575, 1984.

    Article  Google Scholar 

  • Turnbull, D. N. and R. P. Lowe, New hydroxyl transition probabilities and their importance in airglow studies, Planet. Space Sci., 37(6), 723–738, 1989.

    Article  Google Scholar 

  • Wiens, R. H., S.-P. Zhang, R. N. Peterson, and G. G. Shepherd, MORTI: A mesopause oxygen rotational temperature imager, Planet. Space Sci., 39, 1363–1375, 1991.

    Article  Google Scholar 

  • Wiens, R. H., A. Moise, S. Brown, S. Sargoytchev, R. N. Peterson, G. G. Shepherd, M. J. López-González, J. J. López-Moreno, and R. Rodrigo, SATI: A spectral airglow temperature imager, Adv. Space Res., 19, 677–680, 1997.

    Article  Google Scholar 

  • Won, Y.-I., Q. Wu, Y. M. Cho, G. G. Shepherd, T. L. Killeen, P. J. Espy, Y. Kim, and B. Solheim, Polar cap observations of mesospheric and lower thermospheric 4-hour waves in temperature, Geophys. Res. Lett., 30(7), 1377, doi:10.1029/2002GL016364, 2003.

    Article  Google Scholar 

  • Zhang, S. P. and G. G. Shepherd, The influence of the diurnal tide on the O( S) and OH emission rates observed by WINDII on UARS, Geophys. Res. Lett., 26, 529–532, 1999.

    Article  Google Scholar 

  • Zhang, S. P., R. H. Wiens, and G. G. Shepherd, Gravity waves from O2 nightglow during the AIDA ’89 campaign II: numerical modeling of the emission rate/temperature ratio, η, J. Atmos. Terr. Phys., 55, 377–395, 1993.

    Article  Google Scholar 

  • Zhao, Y., M. J. Taylor, and X. Chu, Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights, J. Geophys. Res., 110, D09S07, doi:10.1029/2004JD005115, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shiokawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Shiokawa, K., Otsuka, Y., Suzuki, S. et al. Development of airglow temperature photometers with cooled-CCD detectors. Earth Planet Sp 59, 585–599 (2007). https://doi.org/10.1186/BF03352721

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352721

Key words

  • Airglow temperature photometers
  • airglow emissions
  • rotational temperature
  • cooled CCD
  • mesopause region