Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Thermal and hydrostatic structure of the protoplanetary nebula exposed to stellar radiation and stellar wind from the central star

  • The Erratum to this article has been published in Earth, Planets and Space 2015 62:6200600551

Abstract

A model for a nebula exposed to the radiation and stellar wind from the central star has been examined. T Tauri stars commonly have disks and stellar wind, though we have no theoretical model on nebular thermal structure under the wind. The aims of this paper are to propose a theoretical nebula model, and to perform mathematical analysis on the geometrical structure and temperature distribution of a passive nebula. Its geometrical surface is determined by the dynamical pressure of the stellar wind. The nebular surface is assumed to be a black body surface, heated by the incident stellar photon flux. We obtain temperature from the equation of energy balance between the stellar radiation upon this nebular surface and the black body radiation from it. The temperature distribution in passive disks is insensitive to the wind strength and is almost identical even if the wind strength changes by five orders of magnitude. The nebula temperature is not expressed by a simple power law function of the distance from the central star. This is an important difference between our results and those of previous works. Since the nebula surrounding a T Tauri star is influenced by stellar wind, our model may be more appropriate than any other simple single power law temperature for passive protoplanetary nebulae.

References

  1. Adams, F. C, C. J. Lada, and F. H. Shu, Spectral evolution of young stellar object, Astrophys. J., 312, 788–806, 1987.

    Article  Google Scholar 

  2. Adams, F C, C. J. Lada, and F H. Shu, The disk of T Tauri stars with flat infrared spectra, Astrophys.J., 326, 865–883, 1988.

    Article  Google Scholar 

  3. Basri, G. and C. Bertout, Accretion disks around T Tauri Stars. II. Balmer emission, Astrophys. J., 341, 340–358, 1989.

    Article  Google Scholar 

  4. Beckwith, S. V. W., A. I. Sargent, R. S. Chini, and R. Gusten, A survey for circumstellar disks around young stellar objects, Astron. J., 99, 924–945, 1990.

    Article  Google Scholar 

  5. Bertout, C, T Tauri Stars: Wild as dust, Annu. RevAstron. Astrophys., 27, 351–395, 1989.

    Article  Google Scholar 

  6. Boss, A. P., Evolution of the solar nebula. II. Protoplanetary disks undergoing mass accretion, Astrophys. J., 469, 906–920, 1996.

    Article  Google Scholar 

  7. Calvet, N., Properties of the wind of T Tauri stars, IAUS, 182, 417–432, 1997.

    Google Scholar 

  8. Carr, J. S., Near-infrared CO emission in young stellar objects, Astrophys. J., 345, 522–535, 1989.

    Article  Google Scholar 

  9. Chiang, E. I. and P. Goldreich, Spectral energy distributions of T Tauli stars with passive circumstellar disks, Astrophys. J., 490, 368–376, 1997.

    Article  Google Scholar 

  10. Chiang, E. I., M. K. Joung, M. J. Creech-Eakman, C. Qi, J. E. Kessler, G. A. Blake, and E. F van Dishoeck, Spectral energy distributions of passive T Tauri and Herbig Ae disks: grain mineralogy, parameter dependences, and comparison with infrared space observatory LWS observations, Astrophys. J., 547, 1077–1089, 2001.

    Article  Google Scholar 

  11. Greene T. P. and M. Meyer, An infrared spectroscopic survey of the p Ophiuchi young stellar cluster: Masses and ages from the H-R diagram, Astrophys. J., 450, 233–244, 1995.

    Article  Google Scholar 

  12. Hartigan, P., S. Edwards, and L. Ghandour, Disk Accretion and loss from young stars, Astrophys. J., 452, 736–768, 1995.

    Article  Google Scholar 

  13. Hartmann, L., Mass loss from solar-type stars, Solar Phys., 100, 587–597, 1985.

    Article  Google Scholar 

  14. Hartmann, L., N. Calvet, E. Avrett, and R. Loeser, Winds from T Tauri stars. I. Spherically symmetric models, Astrophys. J., 349, 168–189, 1

    Article  Google Scholar 

  15. Hartmann, L., N. Calvet, E. Avrett, and P. D’Alessio, Accretion and the evolution of T Tauri Disks, Astrophys. J., 495, 385–400, 1998.

    Article  Google Scholar 

  16. Hayashi, C, K. Nakazawa, and Y. Nakagawa, Formation of the Solar System, in Protostars and Planets II, Edited by Black, D. C. and M. S. Matthews, 1100–1153 pp, Tucson, Univ. Arizona Press, 1985.

    Google Scholar 

  17. Ishitsu, N. and M. Sekiya, The effects of the tidal force on shear instabilities in the dust layer of the solar nebula, Icarus, 165, 181–194, 2003.

    Article  Google Scholar 

  18. Kenyon, S. J., I. Yi, and L. Hartmann, A magnetic accretion disk model for the infrared excesses of T Tauri stars, Astrophys. J., 462, 439–455, 1996.

    Article  Google Scholar 

  19. Kiguchi, M., S. Narita, and C. Hayashi, Wind from T Tauri stars, PASJ, 50, 587–595, 1998.

    Google Scholar 

  20. Kikuchi, N., T. Nakamoto, and K. Ogochi, Disk-halo model for flatspectrum T Tauri stars, PASJ, 54, 589–597, 2002.

    Google Scholar 

  21. Kuhi, L., Mass loss from T Tauri stars, Astrophys. J., 140, 1409–1432, 1964.

    Article  Google Scholar 

  22. Kusaka, T., T. Nakano, and C. Hayashi, Growth of solid particles in the primordial solar nebula, Progr. Theor. Phys., 44, 1580–1595, 1970.

    Article  Google Scholar 

  23. Lamers, H. J. G. L. M. and J. P. Cassinelli, Introduction to Stellar Wind, Camprige Univ. Press, Cambrige, 1999.

    Google Scholar 

  24. Lin, D. N. C. and J. C. B. Papaloizou, On the Dynamical Origin of the Solar System, in Protostars and Planets II, Edited by Black, D. C. and Matthews, M. S., 981–1072, Univ. Arizona Press, Tucson, 1985.

    Google Scholar 

  25. Lin, D. N. C. and J. C. B. Papaloizou, Theory of accretion disks II: Application to observed systems, Annu. Astron. Astrophys., 34, 703–747, 1996.

    Article  Google Scholar 

  26. Lynden-Bell, D. and E. Pringle, The evolution of viscous discs and the origin of the nebular variables, MNRAS, 168, 603–637, 1974.

    Article  Google Scholar 

  27. McCaughrean, M. J. and C. R. O’Dell, Direct imaging of circumstellar disks in the Orion nebula, Astron. J., 111, 1977–1987, 1996.

    Article  Google Scholar 

  28. Miyake, K. and Y Nakagawa, Effects of particle size distribution on opacity curves of protoplanetary disks around T Tauri stars, Icarus, 106, 20–41, 1993.

    Article  Google Scholar 

  29. Papaloizou, J. C. B. and D. N. C. Lin, Theory of accretion disks I: Angular momentum transport processes, Ann. Astron. Astrophys., 33, 505–540, 1995.

    Article  Google Scholar 

  30. Parker, E. N., The hydrodynamic Theory of Solar Corpuscular Radiation and Stellar Winds, Astrophys.J., 132, 821–866, 1960.

    Article  Google Scholar 

  31. Parker, E. N., Dynamical properties of stellar coronas and stellar winds.I. Integration of the momentum equation, Astrophys. J., 139, 72–92, 1964.

    Article  Google Scholar 

  32. Rydgren, A. E. and D. S. Zak, On the spectral from of the infrared excess component in T Tauri systems, PASP, 99, 141–145, 1987.

    Article  Google Scholar 

  33. Safronov, V.S., Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets, Nauka, Moscow., 1969.; Transl. NASA TTF-677, 1972.

    Google Scholar 

  34. Strom, K. M., S. E. Strom, S. Edwards, S. Cabrit, and M. F. Skruskie, Cir-cumstellar material associated with solar-type pre-main-sequence stars: A possible on the timescale for planet building, Astron. J., 97, 1451–1470, 1989.

    Article  Google Scholar 

  35. Walter, F. M., A. Brown, R. D. Mathieu, P. C. Myers, and F. J. Vrba, X-ray sources in regions of star formation. III. Naked T Tauri Stars associated with the Taurus-Auriga Complex, Astron. J., 96, 297–325, 1988.

    Article  Google Scholar 

  36. Wood, B. E., H.-R. Muller, G. P. Zank, and J. L. Linsky, Measured mass-loss rates of solar-like stars as a function of age and activity, Astrophys. J., 574, 412–425, 2002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Seok Yun.

Additional information

An erratum to this article is available at http://dx.doi.org/10.5047/eps.2010.05.002.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yun, Y.S., Emori, H. & Nakazawa, K. Thermal and hydrostatic structure of the protoplanetary nebula exposed to stellar radiation and stellar wind from the central star. Earth Planet Sp 59, 631–643 (2007). https://doi.org/10.1186/BF03352724

Download citation

Key words

  • Protoplanetary nebula
  • stellar wind
  • passive nebula