Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Gravitational energy release in an evolving Earth model

Abstract

The energy budget of the Earth’s core balances the heat lost through cooling with the sum of gravitational, latent heat and radioactive sources (if any). The gravitational and latent heat sources are due to the freezing of core mix onto the surface of the inner core. Gravitational energy is released because the light components of core mix that are released during freezing are buoyant, and rise as they rejoin the fluid core. This source of energy can be regarded as part of the total gravitational energy released as the entire Earth cools and contracts. The main purpose of this paper is to present a new method of evaluating the total energy release. The method is applied to two Earth models. Both show that the gravitational source that stirs the fluid core is less than 30% of the total gravitational energy released through the contraction of the Earth as it cools.

References

  1. Alfè, D., M. J. Gillan, and G. D. Price, Composition and temperature of the Earth’s core constrained by combining ab initio calculations with seismic data, Earth Planet. Sci. Lett., 195, 91–98, 2002a.

  2. Alfè, D., G. D. Price, and M. J. Gillan, Iron under Earth’s core conditions. Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations, Phys. Rev. B, 65, 165118, 2002b.

  3. Braginsky, S. I., Structure of the F layer and reasons for convection in the Earth’s core, Soviet Phys. Dokl., 149, 8–10, 1963.

  4. Braginsky, S. I. and P. H. Roberts, Equations governing convection in Earth’s core and the Geodynamo, Geophys. Astrophys. Fluid Dynam., 79, 1–97, 1995.

  5. Braginsky, S. I. and P. H. Roberts, On the theory of convection in the Earth’s core, pp. 60–82 in Advances in Nonlinear Dynamos, edited by Ferris Mas, A. and M. Núñez, Taylor and Francis, London, 2005.

  6. Braginsky, S. I. and P. H. Roberts, The anelastic and Boussinesq approximations, in Encyclopedia of Geomagnetism & Paleomagnetism, eds. D. Gubbins and E. Herrero-Bervera, Springer, 2007.

  7. Calderwood, A. R., The absolute and relative magnitudes of the power sources that drive the geomagnetic dynamo re-evaluated with a self-consistent geochemical model, EOS Trans. AGU, 81 (48), p.F354, Fall Meeting Suppl., Abstract T21A-0862, American Geophysical Union, December 2000.

  8. Calderwood, A. R., The thermal conductivity profile of the lower mantle and the present day net core heat flux, EOS Trans. AGU, 82 (47), p.F1132, Fall Meeting Suppl., Abstract T21A-0862, American Geophysical Union, December 2001.

  9. Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter, 25, 297–356, 1981.

  10. Eddington, A. S., The internal Constitution of the Stars, University Press, Cambridge UK, 1926.

  11. Gessmann, C. K. and B. J. Wood, Potassium in the core?, Earth Planet. Sci. Lett., 200, 63–78, 2002.

  12. Glatzmaier, G. A. and P. H. Roberts, An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection, Physica D, 97, 81–94, 1996.

  13. Glatzmaier, G. A. and P. H. Roberts, Simulating the geodynamo, Contemp. Phys., 38, 269–288, 1997.

  14. Gubbins, D., D. Alfè, G. Masters, D. Price, and M. J. Gillan, Can the Earth’s dynamo run on heat alone?, Geophys. J. Int., 155, 609–622, 2003.

  15. Gubbins, D., D. Alfè, G. Masters, D. Price, and M. Gillan, Gross thermodynamics of two-component convection, Geophys. J. Int., 157, 1407–1414, 2004.

  16. Labrosse, S., Thermal and magnetic evolution of Earth’s core, Phys. Earth Planet. Inter., 140, 127–143, 2003.

  17. Labrosse, S., J.-P. Poirier, and J.-L. Le Mouël, On the cooling of the inner core, Phys. Earth Planet. Inter., 99, 1–17, 1997.

  18. Labrosse, S., J.-P. Poirier, and J.-L. Le Mouël, The age of the inner core, Earth Planet. Sci. Lett., 190, 111–123, 2001.

  19. Lay, T., J. Hernlund, E. J. Garnero, and M. S. Thorne, A post-perovskite lens and D″ heat flux beneath the central Pacific, Science, 314, 1272–1276, 2006.

  20. Masters, G. and D. Gubbins, On the resolution of density within the Earth, Phys. Earth Planet. Inter., 140, 159–167, 2003.

  21. Murthy, V. R., W. van Westrenen, and Y. Fei, Radioactive heat sources in planetary cores; experimental evidence for potassium, Nature, 423, 163–165, 2003.

  22. Nayfeh, A. H., Perturbation Methods, Wiley, New York, 1973.

  23. Nimmo, F, G. D. Price, J. Brodholt, and D. Gubbins, The influence of potassium on core and geodynamo, Geophys. J. Int., 156, 363–376, 2004.

  24. Poirier, J.-P., Introduction to the Physics of the Earth’s Interior, University Press, Cambridge U.K., 1991.

  25. Roberts, P. H., C. A. Jones, and A. R. Calderwood, Energy fluxes and ohmic dissipation in the earth’s core, pp. 100–129 in Earth’s Core and Lower Mantle, edited by Jones, C.A., A. M. Soward, and K. Zhang, Taylor and Francis, London, 2003.

  26. Schubert, G., D. L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets, University Press, Cambridge U.K., 2001.

  27. Stacey, F D., Physics of the Earth, 2nd Edition, Wiley, New York, 1977.

  28. Stacey, F D., Physics of the Earth, 3rd Edition, Brookfield Press, Brisbane, 1992.

  29. Stacey, F D., High pressure equations of state and planetary interiors, Repts. Prog. Phys., 68, 341–383, 2005.

  30. Stacey, F D. and O. L. Anderson, Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions, Phys. Earth Planet. Inter, 124, 153–162, 2001.

  31. Stacey, F D. and P. M. Davis, High pressure equations of state with applications to the lower mantle and core, Phys. Earth Planet. Inter, 142, 137–184, 2004.

  32. Stacey, F D. and C. H. B. Stacey, Gravitational energy of core evolution: implications for thermal history and geodynamo power, Phys. Earth Planet. Inter, 110, 83–93, 1999.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaru Kono.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roberts, P.H., Kono, M. Gravitational energy release in an evolving Earth model. Earth Planet Sp 59, 651–659 (2007). https://doi.org/10.1186/BF03352727

Download citation

Key words

  • Earth’s core
  • thermal evolution
  • inner core growth
  • core convection
  • geodynamo