Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Testing the GAD throughout geological time

Abstract

The suggestion that the morphology of the geomagnetic field can be tested by inspecting the statistical distribution of palaeomagnetically-determined inclination angles has been challenged on the grounds that typical plate velocities require extremely long sampling intervals—perhaps exceeding the age of the Earth—in order to adequately sample the Earth’s surface. Here, we investigate this problem by means of a random walk model and conclude that an interval equivalent to Phanerozoic time (600 Myr) is generally sufficient.

References

  1. Blackett, P. M. S., Comparisons of ancient climate with the ancient latitude deduced from rock magnetic measurements, Proc. Roy. Soc. London A, 263, 1–30, 1961.

    Article  Google Scholar 

  2. Blackett, P. M. S., Paleomagnetism and paleoclimatology, J. Geomag. Geoelec., 13, 127–132, 1962.

    Article  Google Scholar 

  3. Bloxham, J., Sensitivity of the geomagnetic axial dipole to thermal coremantle interactions, Nature, 405, 63–65, 2000.

    Article  Google Scholar 

  4. Briden, J. C. and E. Irving, Paleoclimatic spectra of sedimentary paleoclimatic indicators, in Problems in Paleoclimatology, Edited by A. E. M. Nairn, pp. 199–250, Wiley Interscience, New York, 1964.

    Google Scholar 

  5. Briden, J. C., A. G. Smith, and J. T. Sallomy, The geomagnetic field in Permo-Triassic time, Geophys. J. Roy. Astron. Soc., 23, 101–117, 1970.

    Article  Google Scholar 

  6. Evans, M. E., Test of the dipolar nature of the geomagnetic field throughout Phanerozoic time, Nature, 262, 676–677, 1976.

    Article  Google Scholar 

  7. Evans, M. E., Testing the geomagnetic dipole hypothesis: palaeolatitudes sampled by large continents, Geophys. J. Int., 161, 266–267, 2005.

    Article  Google Scholar 

  8. Hoelter, J. W., The analysis of covariance structures, Soc. Methods Res., 11, 325–344, 1983.

    Article  Google Scholar 

  9. Hoffman, P. F. and D. P. Schrag, The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129–155, 2002.

    Article  Google Scholar 

  10. Irving, E., Palaeomagnetic and palaeoclimatological aspects of polar wandering, Geofis. Pura Appl., 33, 23–41, 1956.

    Article  Google Scholar 

  11. Kent, D. V. and M. A. Smethurst, Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian, Earth Planet. Sci. Lett., 160, 391–402, 1998.

    Article  Google Scholar 

  12. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochemistry, Geophysics, Geosystems, 6(2), doi:10.1029/2004GC000801, 2005.

    Google Scholar 

  13. McElhinny, M. W. and W. E. Senanayake, Variations of the geomagnetic dipole I: The past 50,000 years, J. Geomag. Geoelec., 34, 39–51, 1982.

    Article  Google Scholar 

  14. McElhinny, M. W., P. L. McFadden, and R. T. Merrill, The time-averaged paleomagnetic field 0–5 Ma, J. Geophys. Res., 101(B11), 25007–25028, 10.1029/96JB01911, 1996.

    Article  Google Scholar 

  15. McFadden, P. L., Is 600 Myr long enough for the random palaeogeographic test of the geomagnetic axial dipole assumption?, Geophys. J. Int., 158, 443–445, 2004.

    Article  Google Scholar 

  16. Meert, G. J., E. Tamrat, and J. Spearman, Non-dipole fields and inclination bias: Insights from a random walk analysis, Earth Planet. Sci. Lett., 214, 395–408, 2003.

    Article  Google Scholar 

  17. Nevitt, J. and G. R. Hancock, Improving the root mean square error of approximation for nonnormal conditions in structural equation modeling, J. Exp. Educ., 68, 251–268, 2000.

    Article  Google Scholar 

  18. Perrin, M. and V. Shcherbakov, Paleointensity of the Earth’s magnetic field for the past 400 Ma: Evidence for a dipole structure during the Mesozoic low, J. Geomag. Geoelect., 49, 601–614, 1997.

    Article  Google Scholar 

  19. Piper, J. D. A. and S. Grant, A palaeomagnetic test of the axial dipole assumption and implications for continental distribution throughout geological time, Phys. Earth Planet. Inter., 55, 37–53, 1989.

    Article  Google Scholar 

  20. Runcorn, S. K., The Earth’s Core, Trans. Amer. Geophys. Union, 53, 49–63, 1954.

    Article  Google Scholar 

  21. Runcorn, S. K., On the hypothesis that the mean geomagnetic field for parts of geological time has been that of a geocentric axial multipole, J. Atmos. Terr. Phys., 14, 167–174, 1959.

    Article  Google Scholar 

  22. Tanaka, H., M. Kono, and H. Uchimura, Some global features of palaeointensity in geological time, Geophys. J. Int., 120, 97–102, 1995.

    Article  Google Scholar 

  23. Torsvik, T. H. and R. van der Voo, Refining Gondwana and Pangea palaeogeography; estimates of Phanerozoic non-dipole (octupole) fields, Geophys. J. Int., 151, 771–794, 2002.

    Article  Google Scholar 

  24. Westphal, M., Did a large departure from the geocentric axial dipole field occur during the Eocene? Evidence from the magnetic polar wander path of Eurasia, Earth Planet. Sci. Lett., 117, 15–28, 1993.

    Article  Google Scholar 

  25. Wilson, R. L., Palaeomagnetism in Northern Ireland, Geophys. J. Roy. Astron. Soc., 5, 45–58, 1961.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. E. Evans.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evans, M.E., Hoye, G.S. Testing the GAD throughout geological time. Earth Planet Sp 59, 697–701 (2007). https://doi.org/10.1186/BF03352732

Download citation

Key words

  • Geocentric axial dipole
  • zonal geomagnetic fields
  • random walk model