Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Effects of the site distribution and the prior information on the inverted geomagnetic field model: a case study applying the ABIC method to the synthetic datasets

Abstract

When we use stochastic inversion and Bayesian modelling in order to obtain geomagnetic field models from paleomagnetic data, there are two major factors controlling the solution: determination of the hyperparameter and the type of the smoothing constraint on the model. To investigate contributions of the factors, we calculated some patterns of inversions from synthetic datasets from ideal and real site distributions. The ABIC (Akaike’s Bayesian Information Criteria) minimization method was used to determine the hyperparameter, and then the relationship between the hyperparameter and the ABIC index was demonstrated. Using results of an inversion of synthetic datasets with errors, the most suitable hyperparameters were found for each site distribution, and the good and stable solutions were obtained. However, when number of the sites is few or coverage of the site distribution is not uniform, it is found that the solution is not clearly determined. Moreover, it seems that the solution does not significantly depend on the type of the model constraint.

References

  1. Akaike, H., Likelihood and the Bayes procedure, in Bayesian Statistics, edited by J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, University Press, Valencia, 143–166, 1980.

    Google Scholar 

  2. Bloxham, J. and D. Gubbins, The secular variation of Earth’s magnetic field, Nature, 317, 777–781, 1985.

    Article  Google Scholar 

  3. Bloxham, J. and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19537–19563, 1992.

    Article  Google Scholar 

  4. Bloxham, J., D. Gubbins, and A. Jackson, Geomagnetic secular variation, Phil. Trans. R. Soc. Lond. A., 329, 415–502, 1989.

    Article  Google Scholar 

  5. Constable, C. G. and R. L. Parker, Statistics of the geomagnetic secular variation for the past 5 m.y., J. Geophys. Res., 93, 11569–11581, 1988.

    Article  Google Scholar 

  6. Constable, C. G., C. L. Johnson, and S. P. Lund, Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes?, Phil. Trans. R. Soc. Lond. A, 358, 991–1008, 2000.

    Article  Google Scholar 

  7. Fukahata, Y., Y. Yagi, and M. Matsu’ura, Waveform Inversion for seismic source processes using ABIC with two sorts of prior constraints: Comparison between proper and improper formulations, Geophys. R. Lett., 30, 1–4, doi:10.1029/2002GL016293, 2003.

    Google Scholar 

  8. Gubbins, D., Geomagnetic field analysis - I. stochastic inversion, Geophys. J. R. astr. Soc., 73, 641–652, 1983.

    Article  Google Scholar 

  9. Gubbins, D., Geomagnetic field analysis - II. secular variation consistent with the perfectly conducting core, Geophys. J. R. astr. Soc., 77, 753–766, 1984.

    Article  Google Scholar 

  10. Gubbins, D. and J. Bloxham, Geomagnetic field analysis - III. Magnetic fields on the core-mantle boundary, Geophys. J. R. astr. Soc., 80, 695–713, 1985.

    Article  Google Scholar 

  11. Gubbins, D. and P. Kelly, Persistent patterns in the geomagnetic field over the past 2.5 Myr, Nature, 365, 829–832, 1993.

    Article  Google Scholar 

  12. Hatakeyama, T. and M. Kono, Geomagnetic field model for the last 5 My: time-averaged field and secular variation, Phys. Earth Planet. Inter., 133, 181–215, 2002.

    Article  Google Scholar 

  13. Hongre, L., G. Hulot, and A. Khokhlov, An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter., 106, 311–335, 1998.

    Article  Google Scholar 

  14. Jackson D. D., The use of a priori data to resolve non-uniqueness in linear inversion, Geophys. J. R. astr. Soc., 57, 137–157, 1979.

    Article  Google Scholar 

  15. Jackson, D. D. and M. Matsu’ura, A Bayesian approach to nonlinear inversion, J. Geophys. Res., 90, 581–591, 1985.

    Article  Google Scholar 

  16. Jackson, A., A. R. T. Jonkers, and M. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond. A, 358, 957–990, 2000.

    Article  Google Scholar 

  17. Johnson, C. L. and C. G. Constable, The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr, Geophys. J. Int., 122, 488–519, 1995.

    Google Scholar 

  18. Johnson, C. L. and C. G. Constable, The time-averaged geomagnetic field: global and regional biases for 0–5 Ma, Geophys. J. Int., 131, 643–666, 1997.

    Article  Google Scholar 

  19. Johnson, C. L., C. G. Constable, and L. Tauxe, Mapping long-term changes in Earth’s magnetic field., Science, 300, 2044–2045, doi:20.1126.science.1032007, 2003.

    Article  Google Scholar 

  20. Kelly, P. and D. Gubbins, The geomagnetic field over the past 5 Myr, Geophys. J. Int., 128, 315–330, 1997.

    Article  Google Scholar 

  21. Kono, M., Uniqueness problems in the spherical harmonic analysis of the geomagnetic field direction data, J. Geomag. Geoelectr., 28, 11–29, 1976.

    Article  Google Scholar 

  22. Korte, M. and C. G. Constable, Continuous global geomagnetic field models for the past 3000 years, Phys. Earth Planet. Inter., 140, 73–89, doi:10.1016/j.pepi.2003.07.013, 2003.

    Article  Google Scholar 

  23. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosys., 6, doi:10.1029/2004GC000801, 2005.

  24. Langel, R. A. and R. H. Estes, A geomagnetic field spectrum, Geophys. R. Lett., 9, 250–253, 19

    Article  Google Scholar 

  25. Maus, S., S. Macmillan, T. Chernova, S. Choi, D. Dater, V. Golovkov, V. Lesur, F. Lowes, H. Luhr, W. Mai, S. McLean, N. Olsen, M. Rother, T. Sabaka, A. Thomson, T. Zvereva, and International Association of Geomagnetism, Aeronomy (IAGA), Division V, Working Group VMOD, The 10th generation international geomagnetic reference field, Phys. Earth Planet. Inter., 151, 320–322, 2005.

    Article  Google Scholar 

  26. Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Rev. Ed., 289 pp., Academic Press, 1989.

    Google Scholar 

  27. Mochizuki, E., Y. Yokoyama, I. Shimizu, and Y. Hamano, Spherical harmonic analysis in terms of unevenly distributed observation points and its applications to geomagnetic data, J. Geomag. Geoelectr., 49, 1013–1033, 1997.

    Article  Google Scholar 

  28. Parker, R. L., Geophysical Inverse Theory, 386 pp., Princeton Univ. Press, 1994.

    Google Scholar 

  29. Yabuki, T. and M. Matsu’ura, Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip, Geophys. J. Int., 109, 363–375, 1992.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Hatakeyama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hatakeyama, T. Effects of the site distribution and the prior information on the inverted geomagnetic field model: a case study applying the ABIC method to the synthetic datasets. Earth Planet Sp 59, 703–709 (2007). https://doi.org/10.1186/BF03352733

Download citation

Key words

  • Geomagnetic field
  • inversion
  • ABIC