Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

The behaviour and detection of partial thermoremanent magnetisation (PTRM) tails in Thellier palaeointensity experiments

Abstract

We analyse the results of Thellier palaeointensity experiments modified so that the measured magnetisation at any stage may be decomposed into components of natural remanent magnetisation (NRM) and laboratory thermal remanent magnetisation (TRM). We demonstrate that the very long high temperature tails of pTRM acquired by multidomain (MD) grains may be detected in Thellier experiments without recourse to explicit pTRM tail check measurements. This can save time in the experimental process and provides a more sensitive indication of how MD behaviour may affect that particular experiment than either pTRM tail checks or the observation of zigzagging in an IZZI experiment. We observe that the action of imparting a pTRM tail also involves some removal of NRM. However, the pTRM tails are not the analogues of classical overprints as may be intuitively expected but instead appear to favour remagnetisation over demagnetisation. This and other observed behaviour is not consistent with any phenomenological model of MD TRM but is consistent with predictions made by kinematic theory.

References

  1. Biggin, A. J. and T. Poidras, First-order symmetry of weak-field partial thermoremanence in multi-domain ferromagnetic grains. 1. Experimental evidence and physical implications, Earth Planet. Sci. Lett., 245, 438–453, 2006.

    Article  Google Scholar 

  2. Biggin, A. J. and D. N. Thomas, The application of acceptance criteria to results of Thellier palaeointensity experiments performed on samples with pseudo-single-domain-like characteristics, Phys. Earth. Planet. Int., 138, 279–287, 2003.

    Article  Google Scholar 

  3. Biggin, A. J., First-order symmetry of weak-field partial thermoremanence in multi-domain (MD) ferromagnetic grains: 2. Implications for Thellier-type palaeointensity determination, Earth Planet. Sci. Lett., 245, 454–470, 2006.

    Article  Google Scholar 

  4. Biggin, A. J., M. Perrin, and M. J. Dekkers, A reliable palaeointensity determinations obtained from a non-ideal recorder, Earth Planet. Sci. Lett., 247, 545–563, 2007a.

    Article  Google Scholar 

  5. Biggin, A. J., M. Perrin, and J. Shaw, A comparison of a Quasi-Perpendicular method of absolute palaeointensity determination with other thermal and microwave techniques, Earth Planet. Sci. Lett., 247, 564–581, 2007b.

    Article  Google Scholar 

  6. Bol’shakov, A. S. and V. V. Shcherbakova, A thermomagnetic criterion for determining the domain structure of ferrimagnetics, Izv. Acad. Sci. USSR Phys. SolidEarth, 15, 111–117, 1979.

    Google Scholar 

  7. Coe, R. S., Palaeointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72, 3247–3262, 1967.

    Article  Google Scholar 

  8. Coe, R. S. and C. S. Gromme, A comparison of three methods of determining geomagnetic paleointensities, J Geomag. Geoelectr., 25, 415–435, 1973.

    Article  Google Scholar 

  9. Coe, R. S., C. S. Gromme, E. A. Mankinen, Geomagnetic paleointensities from radiocarbon dated lava flows on Hawaii and the question of the Pacific non-dipole low, J. Geophys. Res.-Solid Earth, 83, 1740–1756, 1978.

    Article  Google Scholar 

  10. Dunlop, D. J. and O. Ozdemir, Beyond Neel’s theories: thermal demagnetization of narrow-band partial thermoremanent magnetizations, Phys. Earth. Planet. Int., 126, 43–57, 2001.

    Article  Google Scholar 

  11. Fabian, K., Acquisition of thermoremanent magnetization in weak magnetic fields, Geophys. J. Int., 142, 478–486, 2000.

    Article  Google Scholar 

  12. Fabian, K., A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles, Earth Planet. Sci. Lett., 188, 45–58, 2001.

    Article  Google Scholar 

  13. Goguitchaichvili, A., J. Morales, J. Urrutia-Fucugauchi, and A. M. Soler, On the use of continuous thermomagnetic curves in paleomagnetism: a cautionary note, Cr Acad Sci Ii A, 333, 699–704, 2001.

    Google Scholar 

  14. Kono, M. and N. Ueno, Palaeointensity determination by a modified Thellier method, Phys. Earth. Planet. Int., 13, 305–314, 1977.

    Article  Google Scholar 

  15. Leonhardt, R., D. Krasa, and R. S. Coe, Multidomain behavior during Thellier paleointensity experiments: a phenomenological model, Phys. Earth. Planet. Int., 147, 127–140, 2004.

    Article  Google Scholar 

  16. Levi, S., The effect of magnetite particle size on palaeointensity determinations of the geomagnetic field., Phys. Earth. Planet. Int., 13, 245–259, 1977.

    Article  Google Scholar 

  17. Lowry, R., Concepts and Applications of Inferential Statistics, 1999.

    Google Scholar 

  18. McClelland, E. and J. C. Briden, An improved methodology for Thellier-type paleointensity determination in igneous rocks and its usefulness for verifying primary thermoremanence, J. Geophys. Res., 101, 21995–22013, 1996.

    Article  Google Scholar 

  19. Néel, L., Some theoretical aspects of rock magnetism, Adv. Phys., 4, 191–242, 1955.

    Article  Google Scholar 

  20. Perrin, M., Paleointesity determination, domain structure, and selection criteria, J. Geophys. Res., 103, 30591–30600, 1988.

    Article  Google Scholar 

  21. Prévot, M., A. Lecaille, and E. A. Mankinen, Magnetic effects of maghematization of oceanic crust, J. Geophys. Res., 86, 4009–4020, 1981.

    Article  Google Scholar 

  22. Riisager, P. and J. Riisager, Detecting multidomain magnetic grains in Thellier palaeointensity experiments, Phys. Earth. Planet. Int., 125, 111–117, 2001.

    Article  Google Scholar 

  23. Riisager, J., P. Riisager, X. X. Zhao, R. S. Coe, and A. K. Pedersen, Paleointensity during a chron C26r excursion recorded in west Greenland lava flows, J. Geophys. Res., 109, B04107 1–12, 2004.

    Google Scholar 

  24. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Philos. T. Roy. Soc. A, 358, 1065–1088, 2000.

    Article  Google Scholar 

  25. Shashkanov, V. A. and V. V. Metallova, Violation of Thellier’s law for partial thermoremanent magnetisation, Izv. Earth Phys., 8, 180–184, 1972.

    Google Scholar 

  26. Shcherbakov, V. P., V. V. Shcherbakova, and Y. K. Vinogradov, On a thermomagnetic criterion for the identification of the domain structure, Izv. Phys. SolidEarth, 37, 244–248, 2001a.

    Google Scholar 

  27. Shcherbakov, VP., VV Shcherbakova, Y. K. Vinogradov, and F. Heider, Thermal stability of pTRMs created from different magnetic states, Phys. Earth. Planet. Int., 126, 59–73, 2001b.

    Article  Google Scholar 

  28. Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite, Geochem. Geophys. Geosys., 5, Art. No. Q02H06, 2004.

  29. Thellier, E., Sur l’aimantation des terres cuites et ses applications géophysique, Ann. Inst. Phys. Globe Univ. Paris, 16, 157–302, 1938.

    Google Scholar 

  30. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans la passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  31. Yu, Y. J. and D. J. Dunlop, On partial thermoremanent magnetization tail checks in Thellier paleointensity determination, J. Geophys. Res., 108, Art. No. 2523, 2003.

    Article  Google Scholar 

  32. Yu, Y. J., L. Tauxe, and A. Genevey, Toward an optimal geomagnetic field intensity determination technique, Geochem. Geophys. Geosys., 5, doi:10.1029/2003GC000630, 2004.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Biggin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biggin, A.J., Perrin, M. The behaviour and detection of partial thermoremanent magnetisation (PTRM) tails in Thellier palaeointensity experiments. Earth Planet Sp 59, 717–725 (2007). https://doi.org/10.1186/BF03352735

Download citation

Key-words

  • Paleointensity
  • thermoremanent magnetisation
  • pTRM tails
  • multidomain grains