Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Paleomagnetism of the Datong monogenetic volcanoes in China: paleodirection and paleointensity during the middle to early Brunhes Chron

Abstract

Paleomagnetic measurements were conducted on Datong volcanic rocks from China, which are thought to have formed in the mid to early Brunhes Chron. Meaningful site-mean paleodirections were obtained from 21 sites which are considered to represent 17 independent cooling units. They give a mean VGP (virtual geomagnetic pole) position of (76.5°N, 7.9°E) with A95=7.7° (N=17), which is statistically distinct from geographic north. This dataset also yields an ASD (angular standard deviation) of 17.2° around the mean VGP position. Because the paleodirections form two clusters, the samples may record the paleomagnetic field during two different short periods and therefore may not average out paleosecular variation. Paleointensity measurements were conducted using three different methods. The DHT and LTD-DHT Shaw methods, the Thellier method, and the microwave Thellier method were applied to 119, 29 and 73 specimens respectively, and they give 66, 16 and 12 successful results (success rates are 55, 55 and 16%). From the LTD-DHT Shaw dataset, eight acceptable site-mean paleointensities are obtained. They give an average VDM (virtual dipole moment) of 3.79±1.94x 1022 A m2. This is 56% lower than the average VDM of 5.91±1.74x 1022 A m2 (N=14) calculated from the selected Thellier data from the latest paleointensity database using the same criteria. One possible reason for this difference might be systematic overestimations of paleointensities by the Thellier method on volcanic rocks.

References

  1. Biggin, A. J., First-order symmetry of weak-field partial thermoremanence in multi-domain (MD) ferromagnetic grains: 2. Implications for Thellier-type palaeointensity determination, Earth Planet. Sci. Lett., 245, 454–470, 2006.

  2. Biggin, A. J. and N. D. Thomas, The application of acceptance criteria to results of Thellier palaeointensity experiments performed on samples with pseudo-single-domain-like characteristics, Phys. Earth Planet. Inter., 138, 279–287, 2003.

  3. Bohnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave palaeointensities from a recent Mexican lava flow, baked sediments and reheated pottery, Earth Planet. Sci. Lett., 214, 221–236, 2003.

  4. Bowles, J., J. S. Gee, D. V. Kent, E. Bergmanis, and J. Sinton, Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows, Geochem. Geophys. Geosyst., 6, Q07002, doi:10.1029/2004GC000900, 2005.

  5. Bureau of Geology and Mineral Resources of Shanxi Province, Regional geology of Shanxi Province, Beijing: Geological Publishing House, 780 pp (in Chinese), 1989.

  6. Calvo, M., M. Prevot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of paleointensity experiments: a study on historic lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

  7. Chauvin, A., P. Roperch, and S. Levi, Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method, Phys. Earth Planet. Inter., 150, 265–286, 2005.

  8. Chen, W. J., D. M. Li, T. M. Dai, Z. P. PU, R. X. Liu, Q. LI, J. Z. Shun, X. Wang, E. Jager, A. J. Hurford, and H. R. Pfeifer, The K-Ar age and excess Ar of Quaternary basalt in Datong, In The Age and Geochemistry of Cenozoic Volcanic Rock in China (ed. R. X. Liu), pp. 81–92, Beijing: Seismological Press (in Chinese), 1992.

  9. Cheng, S. P. and G. Z. Yang, Segmented variations in tectonic geomorphology of Datong-Yangyuan fault zone, NW Beijing, China, J. Balkan Geophs. Soc., 2, 46–62, 1999.

  10. Cheng, S. P., C. Y. Li, G. Z. Yang, and S. W. Zhou, Differentiating Pleistocene tectonically driven and climate-related fluvial incision: the Sanggan River, Datong Basin, North China, Geol. Mag., 143, 393–410, 2006.

  11. Coe, R. S., S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the pacific nondipole low, J. geophys. Res., 83, 1740–1756, 1978.

  12. Coe, R. S., S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from excursion sequences in lavas on Oahu, Hawaii, J. geophys. Res., 89, 1059–1069, 1984.

  13. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomag-netites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

  14. Deng, Q. D., N. Yonekura, X. W. Xu, Y. Suzuke, C. Y. Wang, T. Akira, Z. Z. Su, and Y. P. Wang, Study on the late Quaternary Kinematics of the northern piedmont fault of the Liuleng Mountain, Seismology and Geology, 16, 339–343 (in Chinese), 1994.

  15. Duan, R. T. and Z. J. Fang, Neotectonic characteristics of the northern piedmont fault of the Liuleng Mountain, Seismology and Geology, 17, 205–213 (in Chinese), 1995.

  16. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, 3, 10.1029/2001JB000486, 2002.

  17. Fox, J. M. W. and M. J. Aitken, Cooling rate dependence of the thermore-manent magnetization, Nature, 283, 462–463, 1980.

  18. Goguitchaichvili, A., J. Urrutia-Fucugauch, L. M. Alva-Valdivia, J. Morales, J. Riisager, and P. Riisager, Long-term variation of geomagnetic field strength: a cautionary note, Eos Trans. AGU, 85, 209–212, 2004.

  19. Gratton, M. N., J. Shaw, and E. Herrero-Bervera, An absolute palaeointensity record from SOH1 lava core, Hawaii using the microwave technique, Phys. Earth Planet. Inter., 148, 193–214, 2005.

  20. Heider, F., D. J. Dunlop, and H. C. Soffel, Low-temperature and alternating field demagnetization of saturation remanence and thermoremanence in magnetite grains (0.037μm to 5mm), J. Geophys. Res., 97, 9371–9381, 1992.

  21. Herrero-Bervera, E. and J. P. Valet, Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA), Earth Planet. Sci. Lett., 234, 279–296, 2005.

  22. Hill, M. J. and J. Shaw, Paleointensity results for historic lavas from Mt Etna using microwave demagnetization/remagnetization in a modified Thellier-type experiment, Geophys. J. Int., 139, 583–590, 1999.

  23. Hill, M. J. and J. Shaw, Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave paleointensity technique, Geophys. J. Int., 142, 487–504, 2000.

  24. Hill, M. J., J. Shaw, and E. Herrero-Bervera, Palaeointensity record through the Lower Mammoth reversal from the Waianae volcano, Hawaii, Earth Planet. Sci. Lett., 230, 255–272, 2005.

  25. Hill, M. J., J. Shaw, and E. Herrero-Bervera, Determining palaeointensity from the Gilbert Gauss Reversal recorded in the Pufu Heleakala lava section, Waifanae Volcano, Oahu, Hawaii, Earth Planet. Sci. Lett., 245, 29–38, 2006.

  26. Hurford, A. J. and W. J. Chen, Dating the Datong volcanics in North China: the new K-Ar-Standard, Schweiz. Mineral. Petrogr. Mitt., 66, 483, 1986.

  27. International Association of Geomagnetism and Aeronomy (IAGA), Division V, Working Group VMOD: Geomagnetic Field Modeling, The 10th-Generation International Geomagnetic Reference Field, Geophys. J. Int., 161, 561–565, 2005.

  28. Juarez, M. T. and L. Tauxe, The intensity of the time-averaged geomagnetic field: the last 5 Myr, Earth Planet. Sci. Let., 175, 169–180, 2000.

  29. Kaneoka, I., K. Notsu, and C. Liu, K-Ar age and Sr isotopic ratio of a Pleistocene Datong basalt, China, Bull. Volcano. soc. Japan, 28, 75–78, 1983.

  30. Kirschvink, J. L., The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astr. Soc., 62, 699–718, 1980.

  31. Kissel, C. and C. Laj, Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic long cores, Phys. Earth Planet. Inter., 147, 155–169, 2004.

  32. Kono, M. and N. Ueno, Paleointensity determination by a modified thellier method, Phys. Earth Planet. Inter., 13, 305–314, 1977.

  33. Kono, M., Y. Hamano, T. Nishitani, and T. Tosha, A new spinner magnetometer: principles and techniques, Geophys. J. R. Astr. Soc., 67, 217–227, 1984.

  34. Kono, M., H. Kitagawa, and H. Tanaka, Use of automatic spinner magnetometer—AF demagnetizer system for magnetostratigraphy and paleosecular variation studies (abstract), in Proc. 8th Scientific Assembly IAGA, 1997 Abstract book, pp. 66, Uppsala, 1997.

  35. Levi, S., The effect of magnetite particle size on paleointensity determinations of the geomagnetic field, Phys. Earth Planet. Inter., 13, 245–259, 1977.

  36. Liu, J., J. Han, and Z. Guo, The Cenozoic volcanoes in Northeast China, J. Geocsci. Res. NE Asia, 5, 7–15, 2002.

  37. McFadden, P. L. and F. J. Lowes, The discrimination of mean directions drawn from Fisher distributions, Geophys. J. R. Astr. Soc., 67, 19–33, 1981.

  38. McFadden, P. L. and M. W. McElhinny, The combined analysis of re-magnetization circles and direct observations in paleomagnetism, Earth planet. Sci. Lett., 87, 161–172, 1988.

  39. McFadden, P. L., R. T. Merrill, and M. W. McElhinny, Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 93, 11583–11588, 1988.

  40. McFadden P. L., R. T. Merrill, M. W. McElhinny, and S. Lee, Reversals of the Earth’s magnetic field and temporal variations of the dynamo families, J. Geophys. Res., 96, 3923–3933, 1991.

  41. Mochizuki, N., H. Tsunakawa, Y. Oishi, S. Wakai, K. Wakabayashi, and Y. Yamamoto, Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods, Phys. Earth Planet. Inter., 146, 395–416, 2004.

  42. Mochizuki, N., H. Tsunakawa, H. Shibuya, J. Cassidy, and I. E. M. Smith, Palaeointensities of the Auckland geomagnetic excursions by the LTD-DHT Shaw method, Phys. Earth Planet. Inter., 154, 168–179, 2006.

  43. Morales, J., L. M. Alva-Valdivia, A. Goguitchaichvili, and J. Urrutia-Fucugauchi, Cooling rate corrected paleointensities from the Xitle lava flow: Evaluation of within-site scatter for single spot-reading cooling units, Earth Planets Space, 58, 1341–1347, 2006.

  44. Nagata, T., Y. Arai, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

  45. Oishi, Y., H. Tsunakawa, N. Mochizuki, Y. Yamamoto, K. Wakabayashi, and H. Shibuya, Validity of the LTD-DHT Shaw and Thellier palaeoin-tensity methods: a case study of the Kilauea 1970 lava, Phys. Earth Planet. Inter., 149, 243–257, 2005.

  46. Ozima, M., M. Ozima, and S. Akimoto, Low temperature characteristics of remanent magnetization of magnetite—Self-reversal and recovery phenomena of remanent magnetization—, J. Geomag. Geoelectr., 16, 165–177, 1964.

  47. Perrin, M. and E. Schnepp, IAGA paleointensity database: distribution and quality of the data set, Phys. Earth Planet. Inter., 147, 255–267, 2004.

  48. Riisager, P. and J. Riisager, Detecting multidomain magnetic grains in Thellier paleointensity experiments, Phys. Earth Planet. Int., 125, 111–117, 2001.

  49. Roberts, A. P., C. R. Pike, and K. L. Verosub, First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28461–28475, 2000.

  50. Rolph, T. C. and J. Shaw, A new method of paleofield magnitude correction for thermally altered samples and its application to Lower Carboniferous lavas, Geophys. J. R. Astr. Soc., 80, 773–781, 1985.

  51. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Phil. Trans. Roy. Soc. Lond. A., 358, 1065–1088, 2000.

  52. Shaw, J., A new method of determining the magnitude of the paleomagnetic field. Application to five historic lavas and five archaeological samples, Geophys. J. R. Astr. Soc., 76, 637–651, 1974.

  53. Shaw, J., D. Walton, S. Yang, T. C. Rolph, and J. A. Share, Microwave archaeointensities from Peruvian ceramics, Geophys. J. Int., 124, 241–244, 1996.

  54. Shcherbakov, V. P. and V. V. Shcherbakova, On the suitability of the Thellier method of paleointensity determinations on pseudo-single-domain and multidomain grains, Geophys. J. Int., 146, 20–30, 2001.

  55. Shcherbakova, V. V., V. P. Shcerbakov, and F. Heider, Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains, J. geophys. Res., 105, 767–781, 2000.

  56. Tanaka, H. and T. Kobayashi, Paleomagnetism of the late Quaternary On-take Volcano, Japan: directions, intensities, and excursions, Earth Planets Space, 55, 189–202, 2003.

  57. Tanaka, H. and M. Kono, Preliminary Results and Reliability of Paleointensity Studies on Historical and 14C Dated Hawaiian Lavas, J. Geomag. Geoelectr., 43, 375–388, 1991.

  58. Tanaka, H., M. Kono, and S. Kaneko, Paleosecular variation of direction and intensity from two Pliocene-Pleistocene lava sections in southwestern Iceland, J. Geomag. Geoelectr., 47, 89–102, 1995a.

  59. Tanaka, H., M. Kono, and H. Uchimura, Some global features of paleoin-tensity in geological time, Geophys. J. Int., 120, 97–102, 1995b.

  60. Tanaka, H., R. Kamizaki, and Y. Yamamoto, Palaeomagnetism of the Older Ontake Volcano, Japan: contributions to the palaeosecular variation for 750-400 Ka, the lower half of the Brunhes Chron, Geophys. J. Int., 169, 81–90, 2007.

  61. Tauxe, L. and D. Kent, A Simplified Statistical Model for the Geomagnetic Field and the Detection of Shallow Bias in Paleomagnetic Inclinations: Was the Ancient Magnetic Field Dipolar?, Channell, J. E. T. et al., eds., Geophysical Monograph, 145, 101–116, 2004.

  62. Tauxe, L. and J. J. Love, Paleointensity in Hawaiian Scientific Drilling Project Hole (HSDP2): Results from submarine basaltic glass, Geochem., Geophys., Geosyst., 4, 8702, doi:10.1029/2001GC000276, 2003.

  63. Tauxe, L., C. Luskin, P. Selkin, P. Gans, and A. Calvert, Paleomagnetic results from the Snake River Plain: Contribution to the time-averaged field global database, Geochem. Geophys. Geosyst., 5, Q08H13, doi:10. 1029/2003GC000661, 2004.

  64. Thellier, E. and O. Thellier, Sur l’intensite du champ magnetique terrestre dans le passe historique et geologique, Ann. Geophys., 15, 285–376, 1959.

  65. Thomas, N. D., M. J. Hill, and A. S. Garcia, Comparison of the Coe-Thellier-Thellier and microwave palaeointensity techniques using high-titanium titanomagnetites: results from a Tertiary basaltic intrusion from the Sydney Basin, New South Wales, Earth Planet. Sci. Lett., 229, 15–29, 2004.

  66. Tsunakawa, H. and J. Shaw, The Shaw method of paleointensity determinations and its application to recent volcanic rocks, Geophys. J. Int., 118, 781–787, 1994.

  67. Valet, J. P., Time variations in geomagnetic intensity, Rev. Geophys., 41, 1004, doi:10.1029/2001RG000104, 2003.

  68. Xu, S. and D. J. Dunlop, Thellier paleointensity theory and experiments for multidomain grains, J. Geophys. Res., 109, B07103 doi:10. 1029/2004JB003024, 2004.

  69. Xu, X. W., N. Yonekura, S. Yasukiro, Q. D. Deng, Y. P. Wang, T. Akira, and C. Y. Wang, Geomorphic study on late quaternary irregular faulting along the northern piedmont of Liulengshan Range, Shanxi Province, China, Seismology and Geology, 18, 169–181 (in Chinese), 1996.

  70. Yamamoto, Y., Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of Thellier paleointensity determination inferred from equilibrium temperature of the Fe-Ti oxide, Earth Planets Space, 58, 1033–1044, 2006.

  71. Yamamoto, Y. and H. Tsunakawa, Geomagnetic field intensity during the last 5 Myr: LTD-DHT Shaw palaeointensities from volcanic rocks of the Society lslands, French Polynesia, Geophys. J. Int., 162, 79–114, 2005.

  72. Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

  73. Yu, Y., L. Tauxe, and A. Genevey, Toward an optimal geomagnetic field intensity determination technique, Geochem. Geophys. Geosyst., 5, Q02H07, doi:10.1029/2003GC000630, 2004.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, Y., Tsunakawa, H., Shaw, J. et al. Paleomagnetism of the Datong monogenetic volcanoes in China: paleodirection and paleointensity during the middle to early Brunhes Chron. Earth Planet Sp 59, 727–746 (2007). https://doi.org/10.1186/BF03352736

Download citation

Key words

  • Paleosecular variation
  • paleointensity
  • LTD-DHT Shaw method
  • Datong Volcano
  • Brunhes Chron