Skip to main content

Volume 59 Supplement 7

Special Issue: Perspectives of Geomagnetism: Geodynamo, Paleomagnetism, and Rock magnetism—Tribute to Prof. Masaru Kono

A new type of a three-component spinner magnetometer to measure the remanence of rocks at elevated temperature

Abstract

A new instrument to continuously determine the remanent magnetisation of standard paleomagnetic (inchsized) rock samples during heating and cooling (continuous thermal demagnetisation) was developed. The design as an off-axis spinner magnetometer (i.e. the samples rotate on a circular path in a radial distance to the spinning axis) allows the simultaneous measurement of several samples and offers a way to determine the full vector of magnetisation. Six fluxgate sensors are used to record three gradients of the magnetic fields caused by the samples and the vector of remanence is determined by regression analysis of the gradient signals. The sensitivity of the instrument is 2·10−7 Am2. Hot air is circulating through copper pipes which heat the samples by thermal radiation to avoid magnetic fields which would arise from direct electrical heating. Currently, the measurements are restricted to a maximum of 350°C. The instrument was tested with oceanic basalt samples that were given an artificial remanence. Some continuous thermal demagnetisation experiments of this artificial remanence and of the natural remanent magnetisations are shown for oceanic basalts.

References

  • Cairanne, G., F. Brunet, J. P. Pozzi et al., Magnetic monitoring of hydrothermal magnetite nucleation-and-growth: Record of magnetic reversals, American Mineralogist, 88, 1385–1389, 2003.

    Article  Google Scholar 

  • Chamalaun, F. H. and H. Porath, A Continuous Thermal Demagnetizer for Rock Magnetism, Pageoph, 70, 105–109, 1968.

    Article  Google Scholar 

  • Christie, D. M., R. B. Pedersen, D. J. Miller et al., Proc. ODP, Init. Repts., 187, 2001. Available from World Wide Web: http://www-odp.tamu.edu/publications/187 IR/187ir.htm.

  • Collinson, D. W., Methods in Rock Magnetism and Palaeomagnetism, Chapman and Hall, 1983.

    Book  Google Scholar 

  • Creer, K. M., Thermal demagnetization by the continous method, in Methods in Palaeomagnetism, edited by D. W. Collinson, K. M. Creer, S. K. Runcorn, 287 pp., Elsevier, Amsterdam, 1967.

    Google Scholar 

  • Dräger U., M. Préevot, T. Poidras, and J. Riisager, Single-domain chemical, thermochemical and thermal remanences in a basaltic rock, Geophys. J. Int., 166, 12–32, 2006.

    Article  Google Scholar 

  • Fisher, R., Dispersion on a sphere, Proceedings of the Royal Society, A217, 295–305, 1953.

    Article  Google Scholar 

  • Fließbach, T., Elektrodynamik, 3.Auflage, Spektrum Akademischer Verlag, 2000.

    Google Scholar 

  • Gallet, Y. and M. Le Goff, High-temperature archeointensity measurements from Mesopotamia, Earth Planet. Sci. Lett., 241, 159–173, 2006.

    Article  Google Scholar 

  • Heiniger Chr. and F. Heller, A High Temperature Vector Magnetometer, Geophys. J. R. astr. Soc., 44, 281–287, 1976.

    Article  Google Scholar 

  • Irving, E., W. A. Robertson, P. M. Stott, D. H. Tarling, and M. A. Ward, Treatment of partially stable sedimentary rocks showing planar distribution of directions of magnetization, Geophys. J., 66, 1927–1934, 1961.

    Article  Google Scholar 

  • Kono, M., Y. Hamano, T. Nishitani, and T. Tosha, A new spinner magnetometer: principles and techniques, Geophys. J. R. astr. Soc., 67, 217–227, 1981.

    Article  Google Scholar 

  • Kono, M., M. Hoshi, K. Yamaguchi, and Y. Nishi, An automatic spinner magnetometer with thermal demagnetization equipment, J. Geomag. Geoelectr., 43, 429–443, 1991.

    Article  Google Scholar 

  • Kono, M., M. Koyanagi, and S. Kokubun, A ring-core fluxgate for spinner magnetometer, J. Geomag. Geoelctr., 36, 149–160, 1984.

    Article  Google Scholar 

  • Krása, D. and J. Matzka, Inversion of titanomghemite in oceanic basalt during heating, Phys. Earth Planet. Inter., 160, 169–179, 2007.

    Article  Google Scholar 

  • Krása, D., V. P. Shcherbakov, T. Kunzmann, and N. Petersen, Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites, Geophys. J., 162, 115–136, 2005.

    Article  Google Scholar 

  • Krása, D., K. Petersen, and N. Petersen, Variable Field Translation Balance, in Encyclopaedia of Geomagnetism and Paleomagnetism, Series: Encyclopaedia of Earth Sciences Series, edited by D. Gubbins and E. Herrero-Bervera, Springer, 2007.

    Google Scholar 

  • Le Goff, M. and Y. Gallet, A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations, Earth Planet. Sci. Lett., 229, 31–43, 2004.

    Article  Google Scholar 

  • Matzka, J., Besondere magnetische Eigenschaften der Ozeanbasalte im Altersbereich 10 bis 40 Ma, Ph.D. Thesis, Ludwig-Maximilians-Universität München, 2001.

    Google Scholar 

  • Matzka, J., D. Krása, T. Kunzmann, A. Schult, and N. Petersen, Magnetic of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization, Earth Planet. Sci. Lett., 206, 541–553, 2003.

    Article  Google Scholar 

  • Matzka, J. and D. Krása, Oceanic basalt continous thermal demagnetisation curves, Geophys. J. Inter., in press.

  • McClelland, E. and N. Sugiura, A kinematic model of TRM acquisition in multidomain magnetite, Phys. Earth Planet. Inter., 46, 9–23, 1987.

    Article  Google Scholar 

  • Plenier, G., P. Camps, R. S. Coe, and M. Perrin, Absolute palaeointensity of Oligocene (28*30 Ma) lava flows from the Kerguelen Archipelago (southern Indian Ocean), Geophys. J. Inter., 154(3), 877–890, 2003.

    Article  Google Scholar 

  • Schmidt, P.W. and D. A. Clark, Step-wise and continuous thermal demagnetization and theories of thermoremanence, Geophys. J. R. astr. Soc., 83, 731–751, 1985.

    Article  Google Scholar 

  • Shcherbakov, V., E. McClelland, and V. Shcherbakova, A model of multidomain thermoremanent magnetization incorporating temperaturevariable domain structure, J. Geophys. Res., 98, 6201–6216, 1993.

    Article  Google Scholar 

  • Shcherbakova, V. and V. Shcherbakov, Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains, J. Geophys. Res., 105, 767–781, 2000.

    Article  Google Scholar 

  • Stacey, F. D., Spinner-magnetometer for thermal demagnetization experiments on rocks, Journal of Scientific Instruments, 36, 355–359, 1959.

    Article  Google Scholar 

  • Stephenson, A., Apparatus for thermal demagnetization by the progressive method, in Methods in Palaeomagnetism, edited by D.W. Collinson, K. M. Creer, and S. K. Runcorn, 296 pp., Elsevier, Amsterdam, 1967.

    Google Scholar 

  • Wack, M., Aufbau eines Hochtemperatur-Spinnermagnetometers zur magnetischen Untersuchung von Ozeanbasalten, Diploma Thesis, Ludwig-Maximilians-Universität München, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wack.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Wack, M., Matzka, J. A new type of a three-component spinner magnetometer to measure the remanence of rocks at elevated temperature. Earth Planet Sp 59, 853–862 (2007). https://doi.org/10.1186/BF03352747

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352747

Key words