Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

A new type of a three-component spinner magnetometer to measure the remanence of rocks at elevated temperature


A new instrument to continuously determine the remanent magnetisation of standard paleomagnetic (inchsized) rock samples during heating and cooling (continuous thermal demagnetisation) was developed. The design as an off-axis spinner magnetometer (i.e. the samples rotate on a circular path in a radial distance to the spinning axis) allows the simultaneous measurement of several samples and offers a way to determine the full vector of magnetisation. Six fluxgate sensors are used to record three gradients of the magnetic fields caused by the samples and the vector of remanence is determined by regression analysis of the gradient signals. The sensitivity of the instrument is 2·10−7 Am2. Hot air is circulating through copper pipes which heat the samples by thermal radiation to avoid magnetic fields which would arise from direct electrical heating. Currently, the measurements are restricted to a maximum of 350°C. The instrument was tested with oceanic basalt samples that were given an artificial remanence. Some continuous thermal demagnetisation experiments of this artificial remanence and of the natural remanent magnetisations are shown for oceanic basalts.


  1. Cairanne, G., F. Brunet, J. P. Pozzi et al., Magnetic monitoring of hydrothermal magnetite nucleation-and-growth: Record of magnetic reversals, American Mineralogist, 88, 1385–1389, 2003.

  2. Chamalaun, F. H. and H. Porath, A Continuous Thermal Demagnetizer for Rock Magnetism, Pageoph, 70, 105–109, 1968.

  3. Christie, D. M., R. B. Pedersen, D. J. Miller et al., Proc. ODP, Init. Repts., 187, 2001. Available from World Wide Web: IR/187ir.htm.

  4. Collinson, D. W., Methods in Rock Magnetism and Palaeomagnetism, Chapman and Hall, 1983.

  5. Creer, K. M., Thermal demagnetization by the continous method, in Methods in Palaeomagnetism, edited by D. W. Collinson, K. M. Creer, S. K. Runcorn, 287 pp., Elsevier, Amsterdam, 1967.

  6. Dräger U., M. Préevot, T. Poidras, and J. Riisager, Single-domain chemical, thermochemical and thermal remanences in a basaltic rock, Geophys. J. Int., 166, 12–32, 2006.

  7. Fisher, R., Dispersion on a sphere, Proceedings of the Royal Society, A217, 295–305, 1953.

  8. Fließbach, T., Elektrodynamik, 3.Auflage, Spektrum Akademischer Verlag, 2000.

  9. Gallet, Y. and M. Le Goff, High-temperature archeointensity measurements from Mesopotamia, Earth Planet. Sci. Lett., 241, 159–173, 2006.

  10. Heiniger Chr. and F. Heller, A High Temperature Vector Magnetometer, Geophys. J. R. astr. Soc., 44, 281–287, 1976.

  11. Irving, E., W. A. Robertson, P. M. Stott, D. H. Tarling, and M. A. Ward, Treatment of partially stable sedimentary rocks showing planar distribution of directions of magnetization, Geophys. J., 66, 1927–1934, 1961.

  12. Kono, M., Y. Hamano, T. Nishitani, and T. Tosha, A new spinner magnetometer: principles and techniques, Geophys. J. R. astr. Soc., 67, 217–227, 1981.

  13. Kono, M., M. Hoshi, K. Yamaguchi, and Y. Nishi, An automatic spinner magnetometer with thermal demagnetization equipment, J. Geomag. Geoelectr., 43, 429–443, 1991.

  14. Kono, M., M. Koyanagi, and S. Kokubun, A ring-core fluxgate for spinner magnetometer, J. Geomag. Geoelctr., 36, 149–160, 1984.

  15. Krása, D. and J. Matzka, Inversion of titanomghemite in oceanic basalt during heating, Phys. Earth Planet. Inter., 160, 169–179, 2007.

  16. Krása, D., V. P. Shcherbakov, T. Kunzmann, and N. Petersen, Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites, Geophys. J., 162, 115–136, 2005.

  17. Krása, D., K. Petersen, and N. Petersen, Variable Field Translation Balance, in Encyclopaedia of Geomagnetism and Paleomagnetism, Series: Encyclopaedia of Earth Sciences Series, edited by D. Gubbins and E. Herrero-Bervera, Springer, 2007.

  18. Le Goff, M. and Y. Gallet, A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations, Earth Planet. Sci. Lett., 229, 31–43, 2004.

  19. Matzka, J., Besondere magnetische Eigenschaften der Ozeanbasalte im Altersbereich 10 bis 40 Ma, Ph.D. Thesis, Ludwig-Maximilians-Universität München, 2001.

  20. Matzka, J., D. Krása, T. Kunzmann, A. Schult, and N. Petersen, Magnetic of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization, Earth Planet. Sci. Lett., 206, 541–553, 2003.

  21. Matzka, J. and D. Krása, Oceanic basalt continous thermal demagnetisation curves, Geophys. J. Inter., in press.

  22. McClelland, E. and N. Sugiura, A kinematic model of TRM acquisition in multidomain magnetite, Phys. Earth Planet. Inter., 46, 9–23, 1987.

  23. Plenier, G., P. Camps, R. S. Coe, and M. Perrin, Absolute palaeointensity of Oligocene (28*30 Ma) lava flows from the Kerguelen Archipelago (southern Indian Ocean), Geophys. J. Inter., 154(3), 877–890, 2003.

  24. Schmidt, P.W. and D. A. Clark, Step-wise and continuous thermal demagnetization and theories of thermoremanence, Geophys. J. R. astr. Soc., 83, 731–751, 1985.

  25. Shcherbakov, V., E. McClelland, and V. Shcherbakova, A model of multidomain thermoremanent magnetization incorporating temperaturevariable domain structure, J. Geophys. Res., 98, 6201–6216, 1993.

  26. Shcherbakova, V. and V. Shcherbakov, Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains, J. Geophys. Res., 105, 767–781, 2000.

  27. Stacey, F. D., Spinner-magnetometer for thermal demagnetization experiments on rocks, Journal of Scientific Instruments, 36, 355–359, 1959.

  28. Stephenson, A., Apparatus for thermal demagnetization by the progressive method, in Methods in Palaeomagnetism, edited by D.W. Collinson, K. M. Creer, and S. K. Runcorn, 296 pp., Elsevier, Amsterdam, 1967.

  29. Wack, M., Aufbau eines Hochtemperatur-Spinnermagnetometers zur magnetischen Untersuchung von Ozeanbasalten, Diploma Thesis, Ludwig-Maximilians-Universität München, 2006.

Download references

Author information



Corresponding author

Correspondence to Michael Wack.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wack, M., Matzka, J. A new type of a three-component spinner magnetometer to measure the remanence of rocks at elevated temperature. Earth Planet Sp 59, 853–862 (2007).

Download citation

Key words

  • Spinner magnetometer
  • fluxgate
  • continuous thermal demagnetisation
  • natural remanent magnetisation
  • partial self-reversal
  • oceanic basalt
  • Hotspin