Skip to main content

Volume 60 Supplement 1

Special Issue: Itokawa-Hayabusa and beyond

Asteroids and the origin of life—two steps of chemical evolution on the surface of these objects

Abstract

It is now well-known that carbonaceous chondrites contain large quantities of prebiotic molecules, including amino acids, carbohydrates, and heterocyclic bases of nucleic acids. It has become evident that the chemical evolution proceeds under conditions of open space, which serves as a huge chemical reactor. The extraterrestrial origin of these prebiotic molecules has been established on the basis of diversity, molecular structure, and isotopic composition. The molecular composition of a meteorite’s organics resembles abiotic processes governed by physico-chemical processes that occurred on the parent bodies, including asteroids. The synthesis of soluble compounds in carbonaceous chondrites consists of a multi-step process in which organic precursors were formed in the interstellar cloud, incorporated with many volatiles into icy planetesimals and, upon aqueous processing produced the variety of compounds which can form complexes under space energy sources. We show experimentally that the solid mixtures of biologically significant compounds (nucleosides and amino acids) produce more complex compounds when they are exposed to either vacuum UV photons or ionizing radiation.

References

  • Anders, E., Pre-biotic organic matter from comets and asteroids, Nature, 342, 255, 1989.

    Article  Google Scholar 

  • Banin, A., J. G. Lawless, J. Mazzurco, F. M. Church, L. Margulies, and J. B. Orenberg, pH profile of the adsorption of nucleotides onto montmorillonite, Orig. Life Evol. Biosphere, 15, 89–101, 1985.

    Article  Google Scholar 

  • Basiuk, V. and R. Navarro-Gonzalez, Possible role of volcanic ash-gas clouds in the Earth’s prebiotic chemistry, Orig. Life Evol. Biosphere, 26, 173–194, 1996.

    Article  Google Scholar 

  • Bernal, J. D., The physical basis of life, Proc. Roy. Soc. Lond. A, 357, 537–558, 1949.

    Google Scholar 

  • Bernstein, M. P., J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola, Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues, Nature, 416, 401–403, 2002.

    Article  Google Scholar 

  • Boillot, F., A. Chabin, C. Bure, M. Venet, F. Belsky, M. Bertrand-Urbaniak, F. Delmas, A. Brack, and B. Barbier, The Perseus exobiology mission on Mir: Behaviour of amino acids and peptides in Earth orbit, Orig. Life Evol. Biosphere, 32, 359–385, 2002.

    Article  Google Scholar 

  • Bonner, W. A., H. Hall, and Y. Liang, Racemization of amino acids on clays, Orig. Life Evol. Biosphere, 15, 103–114, 1984.

    Article  Google Scholar 

  • Botta, O. and J. L. Bada, Extraterrestrial organic compounds in meteorites, Surv. Geophys., 23, 411–467, 2002.

    Article  Google Scholar 

  • Bradley, J. P., Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets, Science, 265, 925, 1994.

    Article  Google Scholar 

  • Chyba, C. F. and C. Sagan, Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: An inventory for the origins of life, Nature, 355, 125–132, 1992.

    Article  Google Scholar 

  • Colangeli, L., J. R. Brucato, A. Bar-Nun, R. L. Hudson, and M. H. Moore, Laboratory experiments on cometary materials, in Comets II, edited by M. C. Festou, H. U. Keller, and H. A. Weaver, pp. 695–717, University of Arizona Press, Tucson, AZ, 2004.

    Google Scholar 

  • Cooper, G. W., N. Kimmich, W. Belisle, J. Sarinana, K. Brabham, and L. Garrel, Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth, Nature, 414, 879–883, 2001.

    Article  Google Scholar 

  • Cottin, H., M. C. Gazeau, and F. Raulin, Cometary organic chemistry: a review from observation, numerical and experimental simulation, Planet. Space Sci., 47, 1141–1162, 1999.

    Article  Google Scholar 

  • Cronin, J. R., S. Pizzarello, and D. P. Cruickshank, Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets, in Meteorites and the Early Solar System, edited by J. R. Kerridge and M. S. Mattews, pp. 819–857, University of Arizona Press, Tucson, 1988.

  • El Amri, A. G., M.-H. Baron, and M. C. Maurel, Adenine in mineral samples: development of a methodology based on surface enhanced Raman and Raman microscopy for picomole detection, in Proceedings of the 2nd European Workshop on Exo/Astrobiology (Graz, 2002), edited by Lacoste, H., pp. 449–450, ESA Publication Division, Noordwijk, The Netherlands, 2002.

    Google Scholar 

  • Flinn, G. J., The delivery of organic matter from asteroids and comets to the early surface of Mars, Earth, Moon and Planets, 72, 469, 1996.

    Article  Google Scholar 

  • Goldberg, S. and G. Sposito, On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: a review, Commun. Soil Sci. Plant. Anal., 16, 801–821, 1985.

    Article  Google Scholar 

  • Greenberg, J. M., Cosmic dust and our origins, Surface Science, 500, 793–822, 2002.

    Article  Google Scholar 

  • Kobayashi, K., T. Kasamatsu, T. Kaneko, J. Koike, T. Oshima, T. Saito, T. Yamamoto, and H. Yanagawa, Formation of amino acid precursors in cometary ice environments by cosmic radiation, Adv. Space Res., 16(2), 21–26, 1995.

    Article  Google Scholar 

  • Kobayashi, K., T. Kaneko, T. Saito, and T. Oshima, Amino acid formation in gas mixtures by high energy particle irradiation, Orig. Life Evol. Biosphere, 28, 155–165, 1998.

    Article  Google Scholar 

  • Kobayashi, K., Y. Takano, H. Masuda, H. Tonishi, T. Kaneko, H. Hashimoto, and T. Saito, Possible cometary organic compounds as sources of planetary biospheres, Adv. Space Res., 33, 1277–1281, 2004.

    Article  Google Scholar 

  • Kuzicheva, E. A. and M. B. Simakov, Abiogenic synthesis of nucleotides in conditions of space flight of the biosputnik “BION-11”, Adv. Space Res., 23, 387–391, 1999.

    Article  Google Scholar 

  • Kuzicheva, E. A., V. F. Chernova, and O. S. Veselkina, Abiogenic synthesis of adenine nucleotides in presence of lunar soil, Zhurn. Evol. Biokhimii i Fisiologii, 28, 281, 1992 (in Russian).

    Google Scholar 

  • Kuzicheva, E. A., V. F. Zhukova, and M. B. Simakov, Role of UV and γ-radiation in the abiogenic synthesis of nucleotides in solid state, Zhurn. Evol. Biokhimii i Fisiologii, 29, 339–343, 1993 (in Russian).

    Google Scholar 

  • Kuzicheva, E. A., M. B. Simakov, I. L. Malko, N. Ya. Dodonova, and N. B. Gontareva, Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides, Adv. Space Res., 18, 65–68, 1996.

    Article  Google Scholar 

  • Markhinin, E. K., Volcanoes and Life, Mysl, Moscow, 1980 (in Russian).

    Google Scholar 

  • McDonald, G. D., L. J. Whited, C. Deruiter, B. N. Khare, A. Patnaik, and C. Sagan, Production and chemical analysis of cometary ice tholins, Icarus, 122, 107–117, 1996.

    Article  Google Scholar 

  • Mojzsis, S. J., G. Arrhenius, K. D. McKeegan, T. M. Harrison, A. P. Nutman, and C. R. Friend, Evidence for life on Earth before 3,800 million years ago, Nature, 384, 55–59, 1996.

    Article  Google Scholar 

  • Munoz Caro, G. M., U. J. Meierhenrich, W. A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W. H.-P. Thiemann, A. Brack, and J. M. Greenberg, Amino acids from ultraviolet irradiation of interstellar ice analogues, Nature, 416, 403–406, 2002.

    Article  Google Scholar 

  • Orzechowska, G. E., J. D. Goguen, P. V. Johnson, A. Tsapin, and I. Kanik, Ultraviolet photolysis of amino acids in a 100 K water ice matrix: Application to the outer Solar System bodies, Icarus, 187, 584–591, 2007.

    Article  Google Scholar 

  • Otroshchenko, V. A., V. A. Alekseev, and V. K. Ryabchuk, Nonequilibrium processes of organic substances synthesis in interstellar gasdust clouds, in Astrobiology in Russia, Proceedings of the International Workshop, edited by Simakov, M. B. and A. K. Pavlov, pp. 63–92, 23–29 March 2002, St. Petersburg, 2002.

    Google Scholar 

  • Oro, J., T. Mills, and A. Lazcano, Comets and the formation of biochemical compounds on the primitive Earth—a review, Origins Life Evol. Biosphere, 21, 267, 1992.

    Article  Google Scholar 

  • Pearson, V. K., M. A. Sephton, A. T. Kearsley, P. A. Bland, I. A. Franchi, and I. Gilmor, Clay mineral—organic matter relationships in the early Solar system, Meteor. Planet. Sci., 37, 1829–1833, 2002.

    Article  Google Scholar 

  • Sandstrom, A. D., Cosmic Ray Physics, North-Holland Publ. Co., 1965.

    Google Scholar 

  • Schopf, J.W., Microfossils of the early Archean Apex chert: new evidence of the antiquity of life, Science, 260, 640–644, 1993.

    Article  Google Scholar 

  • Simakov, M. B. and E. A. Kuzicheva, Abiogenic photochemical synthesis on surface of meteorites and other small space bodies, Adv. Space Res., 36, 190–194, 2005.

    Article  Google Scholar 

  • Simakov, M. B., E. A. Kuzicheva, I. L. Mal’ko, and N. Ya Dodonova, Abiogenic synthesis of oligopeptides in solid state under action of vacuum ultraviolet light (100–200 nm), Adv. Space Res., 18, 61–64, 1996.

    Article  Google Scholar 

  • Simakov, M. B., E. A. Kuzicheva, N. Y. Dodonova, and A. E. Antropov, Formation of oligopeptides on the surface of small bodies in solar system by cosmic radiation, Adv. Space Res., 19, 1063–1066, 1997a.

    Article  Google Scholar 

  • Simakov, M. B., E. A. Kuzicheva, and I. L. Malko, Abiogenic synthesis of pyrimidine nucleotides in solid state by vacuum ultraviolet radiation, Adv. Space Res., 19, 1059–1062, 1997b.

    Article  Google Scholar 

  • Simakov, M. B., E. A. Kuzicheva, A. E. Antropov, and N. Ya. Dodonova, Abiogenic synthesis of nucleotides on the surface of small space bodies with high energy particles, Adv. Space Res., 30, 1489–1494, 2002.

    Article  Google Scholar 

  • Sleep, N. H., K. J. Jahnle, J. F. Kasting, and H. J. Morowitz, Annihilation of ecosystems by large asteroids impacts on the early Earth, Nature, 342, 139–142, 1989.

    Article  Google Scholar 

  • Stocks, P. G. and A. W. Schwartz, Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation, Geochim. Cosmochim. Acta, 45, 563–566, 1981.

    Article  Google Scholar 

  • Strazzulla, G. and R. E. Johnson, Irradiation effects on comets and cometary debris, in Comets in the Post-Halley Era, edited by Newburn Jr., R., M. Neugebauer, and J. Rahe, pp. 243–275, Kluwer, Dordrecht, 1991.

    Chapter  Google Scholar 

  • Takahashi, J., T. Hosokawa, H. Masuda, T. Kaneko, K. Kobayashi, T. Saito, and U. Utsumi, Abiotic synthesis of amino acids by X-ray irradiation of simple inorganic gases, Appl. Phys. Lett., 74, 877–879, 1999.

    Article  Google Scholar 

  • Takahashi, J., H. Masuda, T. Kaneko, K. Kobayashi, T. Saito, and T. Hosokawa, Photochemical abiotic synthesis of amino-acid precursors from simulated planetary atmospheres by vacuum ultraviolet light, J. Appl. Phys., 98, 024907, 2005.

    Article  Google Scholar 

  • ten Kate, I. L., J. R. C. Garry, Z. Peeters, B. Foing, and P. Ehrenfreund, The effects of Martian near surface conditions on the photochemistry of amino acids, Planet. Space Sci., 54, 296–302, 2006.

    Article  Google Scholar 

  • Yushkin, N. P., Hydrocarbon crystallization of life, Earth Sci. Frontiers, 6, 71–78, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Simakov.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Simakov, M.B. Asteroids and the origin of life—two steps of chemical evolution on the surface of these objects. Earth Planet Sp 60, 75–82 (2008). https://doi.org/10.1186/BF03352764

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352764

Key words