Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Asteroids and the origin of life—two steps of chemical evolution on the surface of these objects


It is now well-known that carbonaceous chondrites contain large quantities of prebiotic molecules, including amino acids, carbohydrates, and heterocyclic bases of nucleic acids. It has become evident that the chemical evolution proceeds under conditions of open space, which serves as a huge chemical reactor. The extraterrestrial origin of these prebiotic molecules has been established on the basis of diversity, molecular structure, and isotopic composition. The molecular composition of a meteorite’s organics resembles abiotic processes governed by physico-chemical processes that occurred on the parent bodies, including asteroids. The synthesis of soluble compounds in carbonaceous chondrites consists of a multi-step process in which organic precursors were formed in the interstellar cloud, incorporated with many volatiles into icy planetesimals and, upon aqueous processing produced the variety of compounds which can form complexes under space energy sources. We show experimentally that the solid mixtures of biologically significant compounds (nucleosides and amino acids) produce more complex compounds when they are exposed to either vacuum UV photons or ionizing radiation.


  1. Anders, E., Pre-biotic organic matter from comets and asteroids, Nature, 342, 255, 1989.

  2. Banin, A., J. G. Lawless, J. Mazzurco, F. M. Church, L. Margulies, and J. B. Orenberg, pH profile of the adsorption of nucleotides onto montmorillonite, Orig. Life Evol. Biosphere, 15, 89–101, 1985.

  3. Basiuk, V. and R. Navarro-Gonzalez, Possible role of volcanic ash-gas clouds in the Earth’s prebiotic chemistry, Orig. Life Evol. Biosphere, 26, 173–194, 1996.

  4. Bernal, J. D., The physical basis of life, Proc. Roy. Soc. Lond. A, 357, 537–558, 1949.

  5. Bernstein, M. P., J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola, Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues, Nature, 416, 401–403, 2002.

  6. Boillot, F., A. Chabin, C. Bure, M. Venet, F. Belsky, M. Bertrand-Urbaniak, F. Delmas, A. Brack, and B. Barbier, The Perseus exobiology mission on Mir: Behaviour of amino acids and peptides in Earth orbit, Orig. Life Evol. Biosphere, 32, 359–385, 2002.

  7. Bonner, W. A., H. Hall, and Y. Liang, Racemization of amino acids on clays, Orig. Life Evol. Biosphere, 15, 103–114, 1984.

  8. Botta, O. and J. L. Bada, Extraterrestrial organic compounds in meteorites, Surv. Geophys., 23, 411–467, 2002.

  9. Bradley, J. P., Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets, Science, 265, 925, 1994.

  10. Chyba, C. F. and C. Sagan, Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: An inventory for the origins of life, Nature, 355, 125–132, 1992.

  11. Colangeli, L., J. R. Brucato, A. Bar-Nun, R. L. Hudson, and M. H. Moore, Laboratory experiments on cometary materials, in Comets II, edited by M. C. Festou, H. U. Keller, and H. A. Weaver, pp. 695–717, University of Arizona Press, Tucson, AZ, 2004.

  12. Cooper, G. W., N. Kimmich, W. Belisle, J. Sarinana, K. Brabham, and L. Garrel, Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth, Nature, 414, 879–883, 2001.

  13. Cottin, H., M. C. Gazeau, and F. Raulin, Cometary organic chemistry: a review from observation, numerical and experimental simulation, Planet. Space Sci., 47, 1141–1162, 1999.

  14. Cronin, J. R., S. Pizzarello, and D. P. Cruickshank, Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets, in Meteorites and the Early Solar System, edited by J. R. Kerridge and M. S. Mattews, pp. 819–857, University of Arizona Press, Tucson, 1988.

  15. El Amri, A. G., M.-H. Baron, and M. C. Maurel, Adenine in mineral samples: development of a methodology based on surface enhanced Raman and Raman microscopy for picomole detection, in Proceedings of the 2nd European Workshop on Exo/Astrobiology (Graz, 2002), edited by Lacoste, H., pp. 449–450, ESA Publication Division, Noordwijk, The Netherlands, 2002.

  16. Flinn, G. J., The delivery of organic matter from asteroids and comets to the early surface of Mars, Earth, Moon and Planets, 72, 469, 1996.

  17. Goldberg, S. and G. Sposito, On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: a review, Commun. Soil Sci. Plant. Anal., 16, 801–821, 1985.

  18. Greenberg, J. M., Cosmic dust and our origins, Surface Science, 500, 793–822, 2002.

  19. Kobayashi, K., T. Kasamatsu, T. Kaneko, J. Koike, T. Oshima, T. Saito, T. Yamamoto, and H. Yanagawa, Formation of amino acid precursors in cometary ice environments by cosmic radiation, Adv. Space Res., 16(2), 21–26, 1995.

  20. Kobayashi, K., T. Kaneko, T. Saito, and T. Oshima, Amino acid formation in gas mixtures by high energy particle irradiation, Orig. Life Evol. Biosphere, 28, 155–165, 1998.

  21. Kobayashi, K., Y. Takano, H. Masuda, H. Tonishi, T. Kaneko, H. Hashimoto, and T. Saito, Possible cometary organic compounds as sources of planetary biospheres, Adv. Space Res., 33, 1277–1281, 2004.

  22. Kuzicheva, E. A. and M. B. Simakov, Abiogenic synthesis of nucleotides in conditions of space flight of the biosputnik “BION-11”, Adv. Space Res., 23, 387–391, 1999.

  23. Kuzicheva, E. A., V. F. Chernova, and O. S. Veselkina, Abiogenic synthesis of adenine nucleotides in presence of lunar soil, Zhurn. Evol. Biokhimii i Fisiologii, 28, 281, 1992 (in Russian).

  24. Kuzicheva, E. A., V. F. Zhukova, and M. B. Simakov, Role of UV and γ-radiation in the abiogenic synthesis of nucleotides in solid state, Zhurn. Evol. Biokhimii i Fisiologii, 29, 339–343, 1993 (in Russian).

  25. Kuzicheva, E. A., M. B. Simakov, I. L. Malko, N. Ya. Dodonova, and N. B. Gontareva, Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides, Adv. Space Res., 18, 65–68, 1996.

  26. Markhinin, E. K., Volcanoes and Life, Mysl, Moscow, 1980 (in Russian).

  27. McDonald, G. D., L. J. Whited, C. Deruiter, B. N. Khare, A. Patnaik, and C. Sagan, Production and chemical analysis of cometary ice tholins, Icarus, 122, 107–117, 1996.

  28. Mojzsis, S. J., G. Arrhenius, K. D. McKeegan, T. M. Harrison, A. P. Nutman, and C. R. Friend, Evidence for life on Earth before 3,800 million years ago, Nature, 384, 55–59, 1996.

  29. Munoz Caro, G. M., U. J. Meierhenrich, W. A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W. H.-P. Thiemann, A. Brack, and J. M. Greenberg, Amino acids from ultraviolet irradiation of interstellar ice analogues, Nature, 416, 403–406, 2002.

  30. Orzechowska, G. E., J. D. Goguen, P. V. Johnson, A. Tsapin, and I. Kanik, Ultraviolet photolysis of amino acids in a 100 K water ice matrix: Application to the outer Solar System bodies, Icarus, 187, 584–591, 2007.

  31. Otroshchenko, V. A., V. A. Alekseev, and V. K. Ryabchuk, Nonequilibrium processes of organic substances synthesis in interstellar gasdust clouds, in Astrobiology in Russia, Proceedings of the International Workshop, edited by Simakov, M. B. and A. K. Pavlov, pp. 63–92, 23–29 March 2002, St. Petersburg, 2002.

  32. Oro, J., T. Mills, and A. Lazcano, Comets and the formation of biochemical compounds on the primitive Earth—a review, Origins Life Evol. Biosphere, 21, 267, 1992.

  33. Pearson, V. K., M. A. Sephton, A. T. Kearsley, P. A. Bland, I. A. Franchi, and I. Gilmor, Clay mineral—organic matter relationships in the early Solar system, Meteor. Planet. Sci., 37, 1829–1833, 2002.

  34. Sandstrom, A. D., Cosmic Ray Physics, North-Holland Publ. Co., 1965.

  35. Schopf, J.W., Microfossils of the early Archean Apex chert: new evidence of the antiquity of life, Science, 260, 640–644, 1993.

  36. Simakov, M. B. and E. A. Kuzicheva, Abiogenic photochemical synthesis on surface of meteorites and other small space bodies, Adv. Space Res., 36, 190–194, 2005.

  37. Simakov, M. B., E. A. Kuzicheva, I. L. Mal’ko, and N. Ya Dodonova, Abiogenic synthesis of oligopeptides in solid state under action of vacuum ultraviolet light (100–200 nm), Adv. Space Res., 18, 61–64, 1996.

  38. Simakov, M. B., E. A. Kuzicheva, N. Y. Dodonova, and A. E. Antropov, Formation of oligopeptides on the surface of small bodies in solar system by cosmic radiation, Adv. Space Res., 19, 1063–1066, 1997a.

  39. Simakov, M. B., E. A. Kuzicheva, and I. L. Malko, Abiogenic synthesis of pyrimidine nucleotides in solid state by vacuum ultraviolet radiation, Adv. Space Res., 19, 1059–1062, 1997b.

  40. Simakov, M. B., E. A. Kuzicheva, A. E. Antropov, and N. Ya. Dodonova, Abiogenic synthesis of nucleotides on the surface of small space bodies with high energy particles, Adv. Space Res., 30, 1489–1494, 2002.

  41. Sleep, N. H., K. J. Jahnle, J. F. Kasting, and H. J. Morowitz, Annihilation of ecosystems by large asteroids impacts on the early Earth, Nature, 342, 139–142, 1989.

  42. Stocks, P. G. and A. W. Schwartz, Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation, Geochim. Cosmochim. Acta, 45, 563–566, 1981.

  43. Strazzulla, G. and R. E. Johnson, Irradiation effects on comets and cometary debris, in Comets in the Post-Halley Era, edited by Newburn Jr., R., M. Neugebauer, and J. Rahe, pp. 243–275, Kluwer, Dordrecht, 1991.

  44. Takahashi, J., T. Hosokawa, H. Masuda, T. Kaneko, K. Kobayashi, T. Saito, and U. Utsumi, Abiotic synthesis of amino acids by X-ray irradiation of simple inorganic gases, Appl. Phys. Lett., 74, 877–879, 1999.

  45. Takahashi, J., H. Masuda, T. Kaneko, K. Kobayashi, T. Saito, and T. Hosokawa, Photochemical abiotic synthesis of amino-acid precursors from simulated planetary atmospheres by vacuum ultraviolet light, J. Appl. Phys., 98, 024907, 2005.

  46. ten Kate, I. L., J. R. C. Garry, Z. Peeters, B. Foing, and P. Ehrenfreund, The effects of Martian near surface conditions on the photochemistry of amino acids, Planet. Space Sci., 54, 296–302, 2006.

  47. Yushkin, N. P., Hydrocarbon crystallization of life, Earth Sci. Frontiers, 6, 71–78, 1999.

Download references

Author information



Corresponding author

Correspondence to M. B. Simakov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simakov, M.B. Asteroids and the origin of life—two steps of chemical evolution on the surface of these objects. Earth Planet Sp 60, 75–82 (2008).

Download citation

Key words

  • Chemical evolution
  • abiogenic synthesis
  • amino acids
  • nucleotides