Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench

Abstract

Magnetic minerals in marine sediments are often dissolved or formed with burial depth, thereby masking the primary natural remanent magnetization and paleoclimate signals. In order to clarify the present sedimentary environment and the progressive changes with burial depth in the magnetic properties, we studied seven cores collected from the Ryukyu Trench, southwest Japan. Magnetic properties, organic geochemistry, and interstitial water chemistry of seven cores are described. Bottom water conditions at the landward slope, trench floor, and seaward slope are relatively suboxic, anoxic, and oxic, respectively. The grain size of the sediments become gradually finer with the distance from Okinawa Island and finer with increasing water depth. The magnetic carriers in the sediments are predominantly magnetite and maghemized magnetite, with minor amounts of hematite. In the topmost sediments from the landward slope, magnetic minerals are diluted by terrigenous materials and microfossils. The downcore variations in magnetic properties and geochemical data provided evidence for the dissolution of fine-grained magnetite with burial depth under an anoxic condition.

References

  1. Banerjee, S. K., C. P. Hunt, and X.-M. Liu, Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau: A rock-magnetic approach, Geophys. Res. Lett., 20(9), 843–846, 1993.

    Article  Google Scholar 

  2. Berner, R. A., Early diagenesis: A theoretical approach, 241 pp., Princeton University Press, Princeton, 1980.

    Google Scholar 

  3. Bloemendal, J., J. W. King, F. R. Hall, and S.-J. Doh, Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediments source, diagenestic processes and sediment lithology, J. Geophys. Res., 97, 4361–4375, 1992.

    Article  Google Scholar 

  4. Carman, R. and L. Rahm, Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper, J. Sea Res., 37, 25–47, 1997.

    Article  Google Scholar 

  5. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

    Article  Google Scholar 

  6. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) II. Application to data for rocks, sediments, and soils, J. Geo-phys. Res, 105(B3), 10.1029/2001JB000487, 2002.

  7. Dunlop, D. J. and O. Ozdemir, Rock magnetism—Fundamentals and frontiers—, 573 pp., Cambridge University Press, UK, 1997.

    Google Scholar 

  8. Emerson, S. and J. I. Hedges, Processes controlling the organic carbon content of open ocean sediments, Paleoceanography, 3, 621–634, 1988.

    Article  Google Scholar 

  9. Evans, M. E. and F. Heller, Environmental Magnetism, Principles and applications of enviromagnetics, 299 pp., Elsevier Science, USA, 2003.

    Google Scholar 

  10. Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Feath, D. Cullen, P. Daphin, D. Hammond, B. Hartman, and V. Maynard, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 34, 1075–1090, 1979.

    Article  Google Scholar 

  11. Garming, J. F. L., U. Bleil, and N. Riedinger, Alteration of magnetic mineralogy at the sulfate methane transition: Analysis of sediments from the Argentine continental slope, Phys. Earth Planet. Inter., 151, 290–308, 2005.

    Article  Google Scholar 

  12. Hase, H. and S. Minato, R/V Mirai Cruise Report MR03-K03 (Leg 1 and Leg 2) June 7–July 30, 141 pp., Japan Marine Science and Technology Center, Japan, 2003.

    Google Scholar 

  13. Hirt, A. M., L. Lanci, J. Dobson, P. Weidler, and A. U. Gehring, Low-temperature magnetic properties of lepidocrocite, J. Geophys. Res., 107(B1), 2011, 2002.

    Article  Google Scholar 

  14. Ishikawa, N. and G. M. Frost, Magnetic properties of sediments from Ocean Drilling Program sites 1109, 1115 and 1118 (Leg 180), Woodlark Basin (Papua New Guinea), Earth Planets Space, 54, 883–897, 2002.

    Article  Google Scholar 

  15. Karlin, R. and S. Levi, Diagenesis of magnetic minerals in recent hemipelagic sediments, Nature, 202, 327–330, 1983.

    Article  Google Scholar 

  16. Kawamura, K. and N. Kawamura, Evolution of clay microstructures of superficial deep-Sea muds during burial compaction: examples from the Ryukyu Trench, Geomechanics Geotechnics Particulate Media, 3–8, 2006.

    Google Scholar 

  17. Kawamura, N. and N. Ishikawa, Sedimentary environments in the Okinawa Trough and the Ryukyu Trench: evidence from paleomagnetic, rock magnetic, and geochemical analyses, Rept. for Grant-in-Aid from Fukada Geological Institute, 116–121, 2006.

    Google Scholar 

  18. Kawamura, N., H. Oda, K. Ikehara, T. Yamazaki, K. Shioi, S. Taga, S. Hatakeyama, and M. Torii, Diagenetic effect on magnetic propeties of marine core sediments from the southern Okhotsk Sea, Earth Planets Space, 59, 83–93, 2007.

    Article  Google Scholar 

  19. King, J. W., S. K. Banerjee, J. Marvin, and O. Ozdemir, A comparison of different magnetic methods for determining the relative grain size of magnetite in natural material: some results from lake sediments, Earth Planet. Sci. Lett., 59, 404–419, 1982.

    Article  Google Scholar 

  20. Kissel, C., C. Laj, A. Mazaud, and T. Dokken, Magnetic anisotropy and environmental changes in two sedimentary cores from the Norwegian Sea and the North Atlantic, Earth Planet. Sci. Lett., 164, 617–626, 1998.

    Article  Google Scholar 

  21. Leslie, B. W., D. E. Hammond, W. M. Berelson, and S. P. Lund, Diagenesis in anoxic sediments from the California continental borderland and its influence on iron, sulfur, and magnetite behavior, J. Geophys. Res., 95(B4), 4453–4470, 1990a.

    Article  Google Scholar 

  22. Leslie, B. W., S. P. Lund, and D. E. Hammond, Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California continental borderland, J. Geophys. Res., 95, 4437–4452, 1990b.

    Article  Google Scholar 

  23. Liu, J., R. Zhu, A. P. Roberts, S. Li, and J.-H. Chang, High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental sediments from the Korea Strait, J. Geophys. Res., 109, 10.1029JB002813, 2004.

  24. Liu, Q., Y. Yu, J. Torrent, A. P. Roberts, Y. Pan, and R. Zhu, Characteristic low-temperature magnetic properties of aluminous goethite [α-(Fe, Al)OOH] explained, J. Geophys. Res., 111(B12), 10.1029JB004560, 2006.

  25. Lowrie, W., Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162, 1990.

    Article  Google Scholar 

  26. Machida, H. and F. Arai, Atlas of Volcanic Ash, 276 pp., Tokyo University Press, Tokyo, Japan, 2003 (in Japanese).

    Google Scholar 

  27. Maher, B. A., Magnetic properties of some synthetic sub-micron magnetites, Geophys. J. R. Astron. Soc., 94, 83–96, 1988.

    Article  Google Scholar 

  28. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski, Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, 1993.

    Article  Google Scholar 

  29. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20(16), 1671–1674, 1993.

    Article  Google Scholar 

  30. Passier, H. F., M. J. Dekkers, and G. J. de Lange, Sediment chemistry and magnetic properties in an anomalously reducing core from the eastern Mediterranean Sea, Chem. Geol., 152, 287–306, 1998.

    Article  Google Scholar 

  31. Piper, J. D. A., Palaeomagnetism and the Continental Crust, 434 pp., Open University Press, Milton Keynes, UK, 1987.

    Google Scholar 

  32. Rey, D., K. J. Mohamed, A. Bernabeu, B. Rubio, and F. Vilas, Early digenesis of magnetic minerals in marine transitional environments: geochemical signatures of hydrodynamic forcing, Mar. Geol., 215, 215–236, 2005.

    Article  Google Scholar 

  33. Robinson, S. G., J. T. S. Sahota, and F. Oldfield, Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices, Mar. Geol., 163, 77–107, 2000.

    Article  Google Scholar 

  34. Stoner, J. S., J. E. T. Channell, and C. Hillaire-Marcel, Magnetic properties of deep-sea sediments off southwest Greenland: evidence for major differences between the last two deglaciations, Geology, 23, 241–244, 1995.

    Article  Google Scholar 

  35. Sugiura, N., ARM, TRM and magnetic interactions: Concentration dependence, Earth Planet. Sci. Lett., 42, 451–455, 1979.

    Article  Google Scholar 

  36. Tarduno, J. A. and S. Wilkinson, Non-sterady state magenetic mineral reduction, chemical lock-in, and delated rementnce acquisition in pelagic sediments, Earth Planet. Sci. Lett., 144, 315-326-84, 1996.

  37. Thompson, R. and F. Oldfield, Environmental magnetism, 227 pp., Allen & Unwin (Publishers) Ltd., London, UK, 1986.

    Google Scholar 

  38. Torii, M., Low-temperature oxidation and subsequent downcore dissolution of magnetite in deep-sea sediments, ODP Leg 161 (Western Mediterranean), J. Geomag. Geoelectr., 49, 1223–1245, 1997.

    Google Scholar 

  39. Ujiie, H. and Y. Ujiie, Late Quaternary course changes of the Kuroshio current in the Ryukyu Arc region, northwestern Pacific Ocean, Mar. Micro., 37, 23–40, 1999.

    Article  Google Scholar 

  40. Veywey, E. J. W., Electron conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144, 327–328, 1939.

    Article  Google Scholar 

  41. Walden, J., F. Oldfield, and J. Smith, Environmental magnetic a practical guide, Quaternary Research Association, 243 pp., Quaternary Research Association, London, 1999.

    Google Scholar 

  42. Yamazaki, T. and N. Ioka, Cautionary note on magnetic grain-size estimation using the ratio of ARM to magnetic susceptibility, Geophys. Res. Lett., 24, 751–754, 1997.

    Article  Google Scholar 

  43. Yamazaki, T., A. L. Abdelaziz, and K. Ikehara, Rock-magnetic changes with reduction diagenesis in Japan Sea surface sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years, Earth Planets Space, 55, 327–340, 2003.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noriko Kawamura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kawamura, N., Kawamura, K. & Ishikawa, N. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench. Earth Planet Sp 60, 179–189 (2008). https://doi.org/10.1186/BF03352781

Download citation

Key words

  • Marine sediments
  • rock magnetic properties
  • early diagenesis
  • interstitial water
  • sedimentary environments