Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Shear-driven kinetic Alfven wave in the plasma sheet boundary layer

Abstract

Shear-driven kinetic Alfven waves (KAWs) at the plasma sheet boundary layer (PSBL) were investigated for substorm events in the presence of a parallel electric field using the general loss-cone distribution function. Using a kinetic approach, we derived the expressions for dispersion relation and growth length of the KAW in the presence of the parallel electric field using the general loss-cone distribution function for both, weak and strong shear regimes. The frequency of the KAW obtained is in agreement with observed values of 0.1–4 Hz in the PSBL. The results explain the generation of the energetic KAWs at the PSBL by the shear at substorm onset. The parallel electric field associated with the energetic KAWs at substorm onset may heat the field-aligned electrons, leading to parallel electron energisation that ultimately causes an intense aurora. The electric field along magnetic field lines enhances the frequency of KAW but decreases the growth length in the case of weak shear. We also found that the parallel electric field can reflect KAW towards the PSBL. The loss-cone distribution index changes the profiles of frequency and growth length plots of the shear-driven KAW. Hence, the loss-cone distribution function is an important factor in the excitation of KAW in the active region of the magnetosphere, such as the PSBL and the auroral acceleration region.

References

  1. Ahirwar, G., P. Varma, and M. S. Tiwari, Electromagnetic ion-cyclotron instability in the presence of a parallel electric field with general distribution function—Particle aspect analysis, Ann. Geophys., 24, 1919, 2006.

    Article  Google Scholar 

  2. Angelopoulos, V., J. A. Chapman, F. S. Mozer, J. D. Sudder, C. T. Russell, K. Tsuruda, T. Mukai, T. J. Hughes, and K. Y. Yumoto, Plasma sheet electromagnetic power generation and its dissipation along auroral field lines, J. Geophys. Res., 107, doi: 10.1029/2001 JA900136, SMP 14, 1–20, 2002.

    Google Scholar 

  3. Duan, S. P., Z. Y. Li, and Z. X. Liu, Kinetic Alfven wave driven by the density inhomogeneity in the presence of loss-cone distribution function-particle aspect analysis, Planet. Space Sci., 53, 1167, 2005.

    Article  Google Scholar 

  4. Eastman, T. E., L. A. Frank, W. K. Peterson, and W. Lennartsson, The plasma sheet boundary layer, J. Geophys. Res., 89, 1553, 1984.

    Article  Google Scholar 

  5. Ergun, R. E., Y. J. Su, L. Andersson, C. W. Carlson, J. P. Mc Fadden, F. S. Mozer, D. L. Newmann, M. V. Goldman, and R. J. Strangeway, Direct observations of localized parallel electric fields in a space plasma, Phys. Rev. Lett., 87, 5003, 2001.

    Article  Google Scholar 

  6. Ganguli, G., S. Slinker, V. Gavrishchaka, and W. Scales, Low frequency oscillations in plasma with spatially variable field-aligned flow, Phys. Plasmas, 9, 2321, 2002.

    Article  Google Scholar 

  7. Gavrishchaka, V., M. E. Koepke, and G. Ganguli, Dispersive properties of a magnetised plasma with a field aligned drift and inhomogeneous transverse flow, Phys. Plasmas, 3, 3091, 1996.

    Article  Google Scholar 

  8. Gavrishchaka, V. V., G. Ganguli, W. Scales, S. P. Slinker, C. C. Chatson, J. P. McFadden, R. E. Ergun, and C. W. Carlson, Multiscale coherent structures and broadband waves due to parallel inhomogeneous flows, Phys. Rev. Lett., 85, 4285, 2000.

    Article  Google Scholar 

  9. Gomberoff, L. and S. Cuperman, On the kinetic instability of uniform plasmas with generalized loss-cone distribution function, J. Plasma Phys., 25, 99, 1981.

    Article  Google Scholar 

  10. Hamrin, M., M. Andre, G. Ganguli, V. Gavrishchaka, E. Koepke, M. W. Zintl, N. Ivchenko, T. Karlsson, and J. H. Clemmons, Inhomogeneous transverse electric fields and wave generation in the auroral region: A statistical study, J. Geophys. Res., 106, 10803, 2001.

    Article  Google Scholar 

  11. Hesegawa, A. and L. Chen, Kinetic process of plasma heating due to Alfven wave excitation, Phys. Res. Lett., 35, 370, 1975.

    Article  Google Scholar 

  12. Hull, A. J., J. W. Bonnell, F. S. Mozer, J. D. Scudder, and C. C. Chaston, Large parallel electric fields in the upward current region of the aurora: Evidence for ambipolar effects, J. Geophys. Res., 108(A6), 1265, 2003.

    Article  Google Scholar 

  13. Keiling, A., J. R. Wygant, C. Cattell, M. Temerin, F. S. Mozer, C. A. Kletzing, J. Sudder, C. T. Russell, W. Lotko, and A. V. Streltsov, Large Alfven wave power in the plasma sheet boundary layer during the expansion phase of substorm, Geophys. Res. Lett., 27, 3169, 2000.

    Article  Google Scholar 

  14. Keiling, A., J. R. Wygant, C. A. Cattell, W. Peria, G. Parks, M. Temerin, F. S. Mozer, C. T. Russell, and C. A. Kletzing, Correlation of Alfven wave Poynting flux in the plasma sheet at 4–7 RE with ionospheric electron energy flux, J. Geophys. Res., 107(A7), 1132, 2002.

    Article  Google Scholar 

  15. Keiling, A., G. K. Parks, J. R. Wygant, J. Dombeck, F. S. Mozer, C. T. Russell, A. V. Streltsov, and W. Lotko, Some properties of Alfven waves: Observations in the tail lobes and the plasma sheet boundary layer, J. Geophys. Res., 110, A10S11, 1–16, 2005.

    Google Scholar 

  16. Lysak, R. L. and W. Lotko, On the kinetic dispersion relation for shear Alfven waves, J. Geophys. Res., 101, 5085, 1996.

    Article  Google Scholar 

  17. Mishra, R. and M. S. Tiwari, Effect of parallel electric field on electrostatic ion-cyclotron instability in anisotropic plasma in the presence of ion beam and general distribution function-Particle aspect analysis, Planet. Space Sci., 54, 188–199, 2006.

    Article  Google Scholar 

  18. Nakamura, R., W. Banmjohann, T. Nagai, M. Fujimoto, T. Mukai, B. Klecker, R. Treumann, A. Balogh, H. Reme, J. A. Sanvand, L. Kistler, C. Monikis, C. J. Owen, A. N. Fazakerley, J. P. Dewhurst, and Y. Bogdanova, Flow shear near the boundary of the plasma sheet observed by Cluster and Geotail, J. Geophys. Res., 109, A05204/1-12, doi: 10.1029/2003 JA010174, 2004.

  19. Pines, D. and R. Schrieffer, Collective behaviour in solid-state, Plasmas Phys. Rev., 124, 1387, 1961.

    Article  Google Scholar 

  20. Scime, E. E., R. Murphy, G. I. Ganguli, and E. Edlund, Electrostatic ion-cyclotron waves in a currentless, anisotropic plasma with inhomogeneous flow, Phys. Plasmas, 10, 4609, 2003.

    Article  Google Scholar 

  21. Summers, D. and R. M. Thorne, Plasma microinstability driven by loss-cone distribution, J. Plasma Phys., 53, 293, 1995.

    Article  Google Scholar 

  22. Tiwari, B. V., R. Mishra, P. Varma, and M. S. Tiwari, Generation of kinetic Alfven wave by velocity shear in the plasma sheet boundary layer during substorm, Indian J. Pure Appl. Phys., 44, 917, 2006.

    Article  Google Scholar 

  23. Vogt, J. and G. Haerendel, Reflection and transmission of Alfven waves at the auroral acceleration region, Geophys. Res. Lett., 25, 277, 1998.

    Article  Google Scholar 

  24. Wang, X. Y., Z. X. Liu, Z. Y. Li, and X. B. Zhang, Kinetic Alfven waves driven by velocity shear, Phys. Plasmas, 5, 836, 1998.

    Article  Google Scholar 

  25. Wu, K. and C. E. Seyler, Instability of inertial Alfven waves in transverse sheared flow, J. Geophys. Res., 108(A6), 1236, SMP 9, 1–19, 2003.

    Google Scholar 

  26. Wygant, J. R., A. Keiling, C. A. Cattell, M. Johnson, R. L. Lysak, M. Temerin, F. S. Mozar, C. A. Kletzing, J. D. Scudder, W. Peterson, C. T. Russell, G. Parks, M. Brittnacher, G. Germany, and J. Spann, Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet tail lobe boundary to UVI images: An energy source for the aurora, J. Geophys. Res., 105, 18675, 2000.

    Article  Google Scholar 

  27. Wygant, J. R., A. Keiling, C. A. Cattell, R. L. Lysak, M. Temerin, F. S. Mozer, C. A. Kletzing, J. D. Scudder, V. Streltsov, W. Lotko, and C. T. Russell, Evidence for kinetic Alfven waves and parallel electron energisation at 4–6 RE altitudes in the plasma sheet boundary layer, J. Geophys. Res., 107(A8), SMP 24–1, 2002.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Varma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiwari, B.V., Mishra, R., Varma, P. et al. Shear-driven kinetic Alfven wave in the plasma sheet boundary layer. Earth Planet Sp 60, 191–205 (2008). https://doi.org/10.1186/BF03352782

Download citation

Key words

  • Kinetic Alfven wave
  • velocity shear
  • loss-cone distribution function
  • parallel electric field
  • plasma sheet boundary layer
  • magnetic substorm