Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Analytic model of upper tropospheric clouds in the tropical Hadley cell

Abstract

We have developed a two-dimensional analytic model that describes the behavior of upper tropospheric clouds in the tropical Hadley cell. The behavior of the model is characterized by two dimensionless parameters: one is proportional to the temperature lapse rate, and the other is relevant to the initial altitude of the cloud particles. We derived analytic expressions for the motion and evaporation of the cloud particles and calculate various cloud properties, such as the cloudiness and the column water content. We found that the outflow from the convective regions spreads out and generates a cirrus layer whose coverage has a maximum at the tropopause: the cloudiness is as large as 0.5–1 in the vicinity of the tropopause for small cloud particles with radii of less than 5 μm. We suggest that the thin cirrus clouds observed near the tropopause in the tropic region are formed by the advection of cloud particles supplied from the ITCZ. Because of its simpleness, the present model may play a role in diagnosing cloud properties in climate models that are used to study climate changes over a long time span.

References

  1. Betts, A. K. and W. Ridgway, Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific, J. Atmos. Sci., 45, 522–536, 1988.

  2. Comstock, J. M., T. P. Ackerman, and G. Mace, Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts, J. Geophys. Res., 107(D23), 4714, 2002.

  3. Danielsen, E. F., A dehydration mechanism for the stratosphere, Geophys. Res. Lett., 9, 605–608, 1982.

  4. Folkins, I., M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffitt, A barrier to vertical mixing at 14 km in the tropics: evidence from ozonesondes and aircraft measurements, J. Geophys. Res., 104, 22095–22102, 1999.

  5. Gill, A. E., Some simple solutions for heat-induced tropical circulation, Quart. J. Roy. Meteorol. Soc., 106, 447–462, 1980.

  6. Held, I. M. and A. Y. Hou, Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere, J. Atmos. Sci., 37, 515–533, 1980.

  7. Held, I. M., R. S. Hemler, and V. Ramaswamy, Radiative-convective equilibrium with explicit two-dimensional moist convection, J. Atmos. Sci., 50, 3909–3927, 1993.

  8. Heymsfield, A. J. and G. M. McFarquhar, Ice particles observed in a cirriform cloud at -83°C and implication for polar stratospheric clouds, J. Atmos. Sci., 43, 851–855, 1986.

  9. Ichii, K., Y. Matsui, K. Murakami, T. Mukai, Y. Yamaguchi, and K. Ogawa, A simple global carbon and energy coupled cycle model for global warming simulation: sensitivity to the light saturation effect, Tellus, 55B, 676–691, 2003.

  10. Iwasa, Y., Y. Abe, and H. Tanaka, Structure of the atmosphere in radiative-convective equilibrium, J. Atmos. Sci., 59, 2197–2226, 2002.

  11. Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, On the formation and persistence of subvisible cirrus clouds near the tropical tropopause, J. Geophys. Res., 101, 21,361–21,375, 1996.

  12. Jensen, E. J., L. Pfister, A. S. Ackerman, O. B. Toon, and A. Tabazadeh, A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause, J. Geophys. Res., 106, 17,237–17,252, 2001.

  13. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, The tropical rainfall measuring mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809–817, 1998.

  14. Lenton, T. M., Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model, Tellus, 52B, 1159–1188, 2000.

  15. Lilly, D. K., Cirrus outflow dynamics, J. Atmos. Sci., 45, 1594–1605, 1988.

  16. Luo, B. P., Th. Peter, H. Wernli, S. Fueglistaler, M. Wirth, C. Kiemle, H. Flentje, V. A. Yushkov, V. Khattatov, V. Rudakov, A. Thomas, S. Borrmann, G. Toci, P. Mazzinghi, J. Beuermann, C. Schiller, F. Cairo, G. Di Don-Francesco, A. Adriani, C. M. Volk, J. Strom, K. Noone, V. Mitev, R. A. Mackenzie, K. S. Carslaw, T. Trautmann, V. Santacesaria, and L. Stefanutti, Ultrathin tropical tropopause clouds (UTTCs): II. Stabilization mechanisms, Atmos. Chem. Phys., 3, 1093–1100, 2003.

  17. McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, Optical properties of the atmosphere, Report AFCRL 71 0279, Air Force Cambridge Research Lab., Bedford, Massachussetts, 1971.

  18. Nakajima, K. and T. Matsuno, Numerical experiments concerning the origin of cloud clusters in the tropical atmosphere, J. Meteor. Soc. Japan, 66, 309–329, 1988.

  19. Newell, R. E., J. W. Kidson, D. G. Vincent, and G. J. Boer, The general circulation of the tropical atmosphere and interactions with extratropical latitudes, Cambridge, 1972.

  20. Peter, Th., B. P. Luo, M. Wirth, C. Kiemle, H. Flentje, V. A. Yushkov, V. Khattatov, V. Rudakov, A. Thomas, S. Borrmann, G. Toci, P. Mazzinghi, J. Beuermann, C. Schiller, F. Cairo, G. Di Don-Francesco, A. Adriani, C. M. Volk, J. Strom, K. Noone, V. Mitev, R. A. Mackenzie, K. S. Carslaw, T. Trautmann, V. Santacesaria, and L. Stefanutti, Ultrathin tropical tropopause clouds (UTTCs): I. Cloud morphology and occurrence, Atmos. Chem. Phys., 3, 1083–1091, 2003.

  21. Pruppacher, H. R. and J. D. Klett, Microphysics of clouds and precipitation, pp. 361–446, Kluwer academic publishers, Netherlands, 1977.

  22. Roewe, D. and K.-N. Liou, Influence of cirrus clouds on the infrared cooling rate in the troposphere and lower stratosphere, J. Appl. Meteor., 17, 92–106, 1978.

  23. Sarachik, E. S., Tropical sea surface temperature: An interactive one-dimensional atmosphere ocean model, Dyn. Atmos. Oceans., 2, 455–469, 1978.

  24. Satoh, M., Atmospheric circulation dynamics and general circulation models, 643 pp, Springer-Praxis, 2002.

  25. Sherwood, S. C., Maintenance of the free-tropospheric tropical water vapor distribution. Part I: Clear regime budget, J. Climate, 9, 2903–2918, 1996.

  26. Sherwood, S. C. and A. E. Dessler, On the control of stratospheric humidity, Geophys. Res. Lett., 27, 2513–2516, 2000.

  27. Sui, C. H., K. M. Lau, W. K. Tao, and J. Simpson, The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate, J. Atmos. Sci., 51, 711–728, 1994.

  28. Wang, Pi-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, A 6-year climatology of cloud occurrence frequency from stratospheric aerosol and gas experiment II observations (1985–1990), J. Geophys. Res., 101, 29,407–29,429, 1996.

  29. Warren, S. G., Optical constants of ice from the ultraviolet to the microwave, Appl. Optics., 23, 1206–1225, 1984.

  30. Winker, D. M. and C. R. Trepte, Laminar cirrus observed near the tropical tropopause by LITE, Geophys. Res. Lett., 25, 3351–3354, 1998.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyoko K. Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, K.K., Yamamoto, T., Watanabe, S. et al. Analytic model of upper tropospheric clouds in the tropical Hadley cell. Earth Planet Sp 60, 219–228 (2008). https://doi.org/10.1186/BF03352784

Download citation

Key words

  • Sub-visible cirrus
  • cloudiness
  • evaporation of cloud particles
  • Hadley circulation