Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Temporal variation of sound speed in ocean: a comparison between GPS/acoustic and in situ measurements

Abstract

The GPS/acoustic technique applied to seafloor geodesy intrinsically measures integrated sound speed along a trajectory of an acoustic signal as well as the position of a seafloor transponder array. We present here a generalized expression of sound speed variation in terms of a traveltime residual normalized to the vertical component. With this expression, residual traveltimes to any seafloor transponders will have a same value regardless of their depths and slant angles. This is valid even for the case having horizontal gradient in sound speed structure; the gradient affects only on positioning of a transponder array and not on the estimate of sound speed just beneath the observation point. We monitored temporal variation of this quantity through a GPS/acoustic survey and compared it with in situ expendable bathythermograph (XBT) measurements periodically carried out during the survey. We found that the relative change of the two independent measurements are in good agreement within 5% of the typical amplitude of temporal variation.

References

  1. Chadwell, C. D., J. A. Hildebrand, F. N. Spiess, J. L. Morton, W. R. Normark, and C. A. Reiss, No spreading across the southern Juan de Fuca Ridge axial cleft during 1994–1996, Geophys. Res. Lett., 26, 2525–2528, 1999.

  2. Chadwell, C. D. and F. N. Spiess, Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data, J. Geophys. Res., 2007 (in press).

  3. Chadwick, W. W. and M. Stapp, A deep-sea observatory experiment using acoustic extensometers: Precise horizontal distance measurements across a mid-ocean ridge, IEEE J. Ocean. Eng., 27, 193–201, 2

  4. Chen, C.-T. and F. Millero, Speed of sound in seawater at high pressure, J. Acoust. Soc. Am., 62, 1129–1135, 1977.

  5. Del Grosso, V. A., New equation for the speed of sound in natural waters (with comparisons to other equations), J. Acoust. Soc. Am., 53, 1084–1091, 1974.

  6. Dushaw, B. D., P. F. Worcester, and B. D. Cornuelle, On equations for the speed of sound in seawater, J. Acoust. Soc. Am., 93, 255–275, 1993.

  7. Fofonoff, N. P. and R. C. Millard Jr., Algorithms for computation of fundamental properties of seawater, Unesco Tech. papers in marine science, 44, 25–27

  8. Fujita, M., T. Ishikawa, M. Mochizuki, M. Sato, S. Toyama, M. Katayama, K. Kawai, Y. Matsumoto, T. Yabuki, A. Asada, and O. L. Colombo, GPS/Acoustic seafloor geodetic observation: method of data analysis and its application, Earth Planets Space, 58, 265–275, 2

  9. Gagnon, K., C. D. Chadwell, and E. Norabuena, Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements, Nature, 434, 205–208, 2005.

  10. Ishikawa, T. and Y. Matsumoto, Handling of sound speed in seafloor geodetic observation, Tech. Bull. Hydrogr. Oceanogr., 25, 100–106, 2007 (in Japanese).

  11. Kido, M., Detecting horizontal gradient of sound speed in ocean, Earth Planets Space, 59, e33–e36, 2007.

  12. Kido, M., H. Fujimoto, S. Miura, Y. Osada, K. Tsuka, and T. Tabei, Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys, Earth Planets Space, 58, 911–915, 2006.

  13. Kizu, S., H. Yoritaka, and K. Hanawa, A new fall-rate equation for T-5 expendable bathythermograph (XBT) by TSK, J. Oceanogr., 61, 115–121, 2005.

  14. Koso, Y., H. Ishii, M. Fujita, and H. Kato, An examination of the depth conversion formula of XCTD-2F, Tech. Bull. Hydrogr. Oceanogr., 23, 93–98, 2005 (in Japanese).

  15. Kuroishi, Y., H. Ando, and Y. Fukuda, A new hybrid geoid model for Japan, GSIGEO2000, J. Geod., 76, 428–436, 2002.

  16. Larson, K. M. and D. C. Agnew, Application of the Global Positioning System to crustal deformation measurement. I—Precision and accuracy, J. Geophys. Res., 96, 16547–16565, 1991.

  17. Leroy, C. C. and F. Parthiot, Depth-pressure relationships in the oceans and seas, J. Acoust. Soc. Am., 103, 1346–1352, 1998.

  18. Lewis, E. L., The practical salinity scale 1978 and its antecedents, IEEE J. Ocean. Eng., 5, 3–8, 1980.

  19. Matsumoto, K., T. Takanezawa, and M. Ooe, Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydro-dynamical model: a global model and a regional model around Japan, J. Oceanogr., 56, 567–581, 2000.

  20. Matsumoto, Y., M. Fujita, T. Ishikawa, M. Mochizuki, T. Yabuki, and A. Asada, Undersea co-seismic crustal movements associated with the 2005 Off Miyagi Prefecture Earthquake detected by GPS/acoustic seafloor geodetic observation, Earth Planets Space, 58, 1573–1576, 2006.

  21. Meinen, C. S. and D. R. Watts, Further evidence that the sound-speed algorithm of Del Grosso is more accurate than that of Chen and Millero, J. Acoust. Soc. Am., 102, 2058–2062, 1997.

  22. Mochizuki, M., Y. Narita, T. Ishikawa, Z. Yoshida, K. Kawai, H. Matsushita, J. Kawai, H. Fuchinoue, Y. Matsumoto, M. Fujita, and A. Asada, Acoustic phase characteristics and phase centers of the acoustic transponders for seafloor geodetic observation, Rep. Hydrogr. Oceanogr. Res., 43, 29–36, 2007 (in Japanese with English abstract).

  23. Pike, J. M. and F. L. Beiboer, A comparison between algorithms for the speed of sound in seawater, The Hydrographic Society, Special Publication, 34, 1993.

  24. Reseghetti, F., M. Borghini, and G. M. R. Manzella, Factors affecting the quality of XBT data—results of analyses on profiles from the Western Mediterranean Sea, Ocean Sci., 3, 59–75, 2007.

  25. Spiess, F. N., Suboceanic geodetic measurements, IEEE Trans. Geosci. Remote Sensing, GE 23, 502–510, 1985.

  26. Spiess, F. N., C. D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Purcell Jr., and H. Dragert, Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth Planet. Inter., 108, 101–112, 1998.

  27. Sugimoto, S., R. Ikuta, M. Ando, K. Tadokoro, T. Okuda, and G. M. Besana, Evaluation for GPS/Acoustic seafloor positioning based on repeated CTD measurements, Earth Planets Space, 2006 (submitted).

  28. Tadokoro, K., M. Ando, R. Ikuta, T. Okuda, G. Besana, S. Sugimoto, and M. Kuno, Observation of coseismic seafloor crustal deformation due to M7 class offshore earthquakes, Geophys. Res. Lett., 33, doi: 10.1029/2006GL026742, 2006.

  29. Udías, A., Principles of Seismology, pp. 490, Cambridge University Press, UK, 2000.

  30. Wong, G. S. K. and S. Zhu, Speed of sound in seawater as a function of salinity, temperature and pressure, J. Acoust. Soc. Am., 97, 1732–1736, 1995.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Kido.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kido, M., Osada, Y. & Fujimoto, H. Temporal variation of sound speed in ocean: a comparison between GPS/acoustic and in situ measurements. Earth Planet Sp 60, 229–234 (2008). https://doi.org/10.1186/BF03352785

Download citation

Key words

  • GPS/acoustic technique
  • seafloor geodesy
  • sound speed
  • XBT