Skip to main content

Temporal variation of sound speed in ocean: a comparison between GPS/acoustic and in situ measurements

Abstract

The GPS/acoustic technique applied to seafloor geodesy intrinsically measures integrated sound speed along a trajectory of an acoustic signal as well as the position of a seafloor transponder array. We present here a generalized expression of sound speed variation in terms of a traveltime residual normalized to the vertical component. With this expression, residual traveltimes to any seafloor transponders will have a same value regardless of their depths and slant angles. This is valid even for the case having horizontal gradient in sound speed structure; the gradient affects only on positioning of a transponder array and not on the estimate of sound speed just beneath the observation point. We monitored temporal variation of this quantity through a GPS/acoustic survey and compared it with in situ expendable bathythermograph (XBT) measurements periodically carried out during the survey. We found that the relative change of the two independent measurements are in good agreement within 5% of the typical amplitude of temporal variation.

References

  • Chadwell, C. D., J. A. Hildebrand, F. N. Spiess, J. L. Morton, W. R. Normark, and C. A. Reiss, No spreading across the southern Juan de Fuca Ridge axial cleft during 1994–1996, Geophys. Res. Lett., 26, 2525–2528, 1999.

    Article  Google Scholar 

  • Chadwell, C. D. and F. N. Spiess, Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data, J. Geophys. Res., 2007 (in press).

  • Chadwick, W. W. and M. Stapp, A deep-sea observatory experiment using acoustic extensometers: Precise horizontal distance measurements across a mid-ocean ridge, IEEE J. Ocean. Eng., 27, 193–201, 2

    Article  Google Scholar 

  • Chen, C.-T. and F. Millero, Speed of sound in seawater at high pressure, J. Acoust. Soc. Am., 62, 1129–1135, 1977.

    Article  Google Scholar 

  • Del Grosso, V. A., New equation for the speed of sound in natural waters (with comparisons to other equations), J. Acoust. Soc. Am., 53, 1084–1091, 1974.

    Article  Google Scholar 

  • Dushaw, B. D., P. F. Worcester, and B. D. Cornuelle, On equations for the speed of sound in seawater, J. Acoust. Soc. Am., 93, 255–275, 1993.

    Article  Google Scholar 

  • Fofonoff, N. P. and R. C. Millard Jr., Algorithms for computation of fundamental properties of seawater, Unesco Tech. papers in marine science, 44, 25–27

    Google Scholar 

  • Fujita, M., T. Ishikawa, M. Mochizuki, M. Sato, S. Toyama, M. Katayama, K. Kawai, Y. Matsumoto, T. Yabuki, A. Asada, and O. L. Colombo, GPS/Acoustic seafloor geodetic observation: method of data analysis and its application, Earth Planets Space, 58, 265–275, 2

    Article  Google Scholar 

  • Gagnon, K., C. D. Chadwell, and E. Norabuena, Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements, Nature, 434, 205–208, 2005.

    Article  Google Scholar 

  • Ishikawa, T. and Y. Matsumoto, Handling of sound speed in seafloor geodetic observation, Tech. Bull. Hydrogr. Oceanogr., 25, 100–106, 2007 (in Japanese).

    Google Scholar 

  • Kido, M., Detecting horizontal gradient of sound speed in ocean, Earth Planets Space, 59, e33–e36, 2007.

    Article  Google Scholar 

  • Kido, M., H. Fujimoto, S. Miura, Y. Osada, K. Tsuka, and T. Tabei, Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys, Earth Planets Space, 58, 911–915, 2006.

    Article  Google Scholar 

  • Kizu, S., H. Yoritaka, and K. Hanawa, A new fall-rate equation for T-5 expendable bathythermograph (XBT) by TSK, J. Oceanogr., 61, 115–121, 2005.

    Article  Google Scholar 

  • Koso, Y., H. Ishii, M. Fujita, and H. Kato, An examination of the depth conversion formula of XCTD-2F, Tech. Bull. Hydrogr. Oceanogr., 23, 93–98, 2005 (in Japanese).

    Google Scholar 

  • Kuroishi, Y., H. Ando, and Y. Fukuda, A new hybrid geoid model for Japan, GSIGEO2000, J. Geod., 76, 428–436, 2002.

    Article  Google Scholar 

  • Larson, K. M. and D. C. Agnew, Application of the Global Positioning System to crustal deformation measurement. I—Precision and accuracy, J. Geophys. Res., 96, 16547–16565, 1991.

    Article  Google Scholar 

  • Leroy, C. C. and F. Parthiot, Depth-pressure relationships in the oceans and seas, J. Acoust. Soc. Am., 103, 1346–1352, 1998.

    Article  Google Scholar 

  • Lewis, E. L., The practical salinity scale 1978 and its antecedents, IEEE J. Ocean. Eng., 5, 3–8, 1980.

    Article  Google Scholar 

  • Matsumoto, K., T. Takanezawa, and M. Ooe, Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydro-dynamical model: a global model and a regional model around Japan, J. Oceanogr., 56, 567–581, 2000.

    Article  Google Scholar 

  • Matsumoto, Y., M. Fujita, T. Ishikawa, M. Mochizuki, T. Yabuki, and A. Asada, Undersea co-seismic crustal movements associated with the 2005 Off Miyagi Prefecture Earthquake detected by GPS/acoustic seafloor geodetic observation, Earth Planets Space, 58, 1573–1576, 2006.

    Article  Google Scholar 

  • Meinen, C. S. and D. R. Watts, Further evidence that the sound-speed algorithm of Del Grosso is more accurate than that of Chen and Millero, J. Acoust. Soc. Am., 102, 2058–2062, 1997.

    Article  Google Scholar 

  • Mochizuki, M., Y. Narita, T. Ishikawa, Z. Yoshida, K. Kawai, H. Matsushita, J. Kawai, H. Fuchinoue, Y. Matsumoto, M. Fujita, and A. Asada, Acoustic phase characteristics and phase centers of the acoustic transponders for seafloor geodetic observation, Rep. Hydrogr. Oceanogr. Res., 43, 29–36, 2007 (in Japanese with English abstract).

    Google Scholar 

  • Pike, J. M. and F. L. Beiboer, A comparison between algorithms for the speed of sound in seawater, The Hydrographic Society, Special Publication, 34, 1993.

  • Reseghetti, F., M. Borghini, and G. M. R. Manzella, Factors affecting the quality of XBT data—results of analyses on profiles from the Western Mediterranean Sea, Ocean Sci., 3, 59–75, 2007.

    Article  Google Scholar 

  • Spiess, F. N., Suboceanic geodetic measurements, IEEE Trans. Geosci. Remote Sensing, GE 23, 502–510, 1985.

    Article  Google Scholar 

  • Spiess, F. N., C. D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Purcell Jr., and H. Dragert, Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth Planet. Inter., 108, 101–112, 1998.

    Article  Google Scholar 

  • Sugimoto, S., R. Ikuta, M. Ando, K. Tadokoro, T. Okuda, and G. M. Besana, Evaluation for GPS/Acoustic seafloor positioning based on repeated CTD measurements, Earth Planets Space, 2006 (submitted).

    Google Scholar 

  • Tadokoro, K., M. Ando, R. Ikuta, T. Okuda, G. Besana, S. Sugimoto, and M. Kuno, Observation of coseismic seafloor crustal deformation due to M7 class offshore earthquakes, Geophys. Res. Lett., 33, doi: 10.1029/2006GL026742, 2006.

  • Udías, A., Principles of Seismology, pp. 490, Cambridge University Press, UK, 2000.

    Book  Google Scholar 

  • Wong, G. S. K. and S. Zhu, Speed of sound in seawater as a function of salinity, temperature and pressure, J. Acoust. Soc. Am., 97, 1732–1736, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Kido.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Kido, M., Osada, Y. & Fujimoto, H. Temporal variation of sound speed in ocean: a comparison between GPS/acoustic and in situ measurements. Earth Planet Sp 60, 229–234 (2008). https://doi.org/10.1186/BF03352785

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352785

Key words