Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Ionospheric hole behind an ascending rocket observed with a dense GPS array

Abstract

An ascending liquid-fuel rocket is known to make a hole in the ionosphere, or localized electron depletion, by leaving behind large amounts of neutral molecules (e.g. water) in the exhaust plume. Such a hole was made by the January 24, 2006 launch of an H-IIA rocket from Tanegashima, Southwestern Japan, and here we report its observation with a dense array of Global Positioning System receivers as a sudden and temporary decrease of total electron content. The observed disturbances have been compared with a simple numerical model incorporating the water diffusion and chemical reactions in the ionosphere. The substantial vanishing of the ionosphere lasted more than one hour, suggesting its application as a window for ground-based radio astronomical observations at low frequencies.

References

  1. Afraimovich, E. L., E. A. Kosogorov, and O. S. Lesyuta, Effects of the August 11, 1999, total solar eclipse as deduced from total electron content measurements at the GPS network, J. Atmos. Solar-Terrestrial Phys., 64, 1933–1941, 2002.

  2. Agnew, D. C. and K. M. Larson, Finding the repeat time of the GPS constellation, GPS Solutions, 11, 71–76, 2007.

  3. Bernhardt, P. A., Three-dimensional, time-dependent modeling of neutral gas diffusion in a nonuniform, chemically reactive atmosphere, J. Geophys. Res., 84, 793–802, 1979a.

  4. Bernhardt, P. A., High-altitude gas releases: transition from collisionless flow to diffusive flow in a nonuniform atmosphere, J. Geophys. Res., 84, 4341–4354, 1979b.

  5. Bernhardt, P. and A. V. da Rosa, A refracting radio telescope, Radio Sci., 12, 327–336, 1977.

  6. Bernhardt, P. A., J. D. Huba, W. E. Swartz, and M. C. Kelley, Incoherent scatter from space shuttle and rocket engine plumes in the ionosphere, J. Geophys. Res., 103, 2239–2251, 1998.

  7. Bernhardt, P. A., J. D. Huba, E. Kudeki, R. F. Woodman, L. Condori, and F. Villanueva, Lifetime of a depression in the plasma density over Jicamarca produced by space shuttle exhaust in the ionosphere, Radio Sci., 36, 1209–1220, 2001.

  8. Bernhardt, P. A., P. J. Erickson, F. D. Lind, J. C. Foster, and B. W. Reinisch, Artificial disturbances of the ionosphere over the Millstone Hill Incoherent Scatter Radar from dedicated burns of the space shuttle orbital maneuver subsystem engines, J. Geophys. Res., 110, doi:10.1029/2004JA010795, 2005.

  9. Booker, H. G., A local reduction of F-region ionization due to missile transit, J. Geophys. Res., 66, 1073–1079, 1961.

  10. Calais, E. and J. B. Minster, GPS detection of ionospheric perturbations following a Space Shuttle ascent, Geophys. Res. Lett., 23, 1897–1900, 1996.

  11. Calais, E., J. B. Minster, M. A. Hofton, and H. Hedlin, Ionospheric signature of surface mine blasts from Global Positioning System measurements, Geophys. J. Int., 132, 191–202, 1998.

  12. Donn, W. L., E. Posmentier, U. Fehr, and N. K. Balachandran, Infrasound at long range from Saturn V, 1967, Science, 162, 1116–1120, 1968.

  13. Mendillo, M., G. S. Hawkins, and J. A. Klobuchar, A sudden vanishing of the ionospheric F region due to the launch of Skylab, J. Geophys. Res., 80, 2217–2225, 1975.

  14. Mendillo, M., J. Baumgardner, D. P. Allen, J. Foster, J. Holt, G. R. A. Ellis, A. Klekociuk, and G. Reber, Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies, Science, 238, 1260–1264, 1987.

  15. Mitchell, C. N., L. Alfonsi, G. De Franceschi, M. Lester, V. Romano, and A. W. Wernik, GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm, Geophys. Res. Lett., 32, doi:10.1029/2004GL021644, 2005.

  16. Novaco, J. C. and L. W. Brown, Nonthermal galactic emission below 10 megahertz, Astrophys. J., 221, 114–123, 1978.

  17. Osawa, H., Shinban Nippon Rocket Monogatari (Story about Japanese Rockets, New Edition), 277 pp, Seibundo-Shinkosha, Tokyo, 2003 (in Japanese).

  18. Papagiannis, M. D. and M. Mendillo, Low frequency radio astronomy through an artificially created ionospheric window, Nature, 255, 42–43, 1975.

  19. Saito, A., M. Nishimura, M. Yamamoto, S. Fukao, T. Tsugawa, Y. Otsuka, S. Miyazaki, and M. C. Kelley, Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime F-region ionosphere with the MU radar and a GPS network, Earth Planets Space, 54, 31–44, 2002.

  20. Zhang, D. H. and Z. Xiao, Study of ionospheric response to the 4B flare on 28 October 2003 using International GPS Service network data, J. Geophys. Res., 110, doi:10.1029/2004JA010738, 2005.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kosuke Heki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Furuya, T., Heki, K. Ionospheric hole behind an ascending rocket observed with a dense GPS array. Earth Planet Sp 60, 235–239 (2008). https://doi.org/10.1186/BF03352786

Download citation

Key words

  • GPS
  • ionospheric hole
  • rocket launch
  • total electron content
  • radio astronomy