Skip to main content

Volume 60 Supplement 4

Special Issue: Lunar Science with the SELENE “Kaguya” Mission-Prelaunch Studies-

Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE

Abstract

The Moon is the nearest celestial body to the Earth. Understanding the Moon is the most important issue confronting geosciences and planetary sciences. Japan will launch the lunar polar orbiter SELENE (Kaguya) (Kato et al., 2007) in 2007 as the first mission of the Japanese long-term lunar exploration program and acquire data for scientific knowledge and possible utilization of the Moon. An optical sensing instrument called the Lunar Imager/Spectrometer (LISM) is loaded on SELENE. The LISM requirements for the SELENE project are intended to provide high-resolution digital imagery and spectroscopic data for the entire lunar surface, acquiring these data for scientific knowledge and possible utilization of the Moon. Actually, LISM was designed to include three specialized sub-instruments: a terrain camera (TC), a multi-band imager (MI), and a spectral profiler (SP). The TC is a high-resolution stereo camera with 10-m spatial resolution from a SELENE nominal altitude of 100 km and a stereo angle of 30° to provide stereo pairs from which digital terrain models (DTMs) with a height resolution of 20 m or better will be produced. The MI is a multi-spectral imager with four and five color bands with 20 m and 60 m spatial resolution in visible and near-infrared ranges, which will provide data to be used to distinguish the geological units in detail. The SP is a line spectral profiler with a 400-m-wide footprint and 300 spectral bands with 6–8 nm spectral resolution in the visible to near-infrared ranges. The SP data will be sufficiently powerful to identify the lunar surface’s mineral composition. Moreover, LISM will provide data with a spatial resolution, signal-to-noise ratio, and covered spectral range superior to that of past Earth-based and spacecraft-based observations. In addition to the hardware instrumentation, we have studied operation plans for global data acquisition within the limited total data volume allotment per day. Results show that the TC and MI can achieve global observations within the restrictions by sharing the TC and MI observation periods, adopting appropriate data compression, and executing necessary SELENE orbital plane change operations to ensure global coverage by MI. Pre-launch operation planning has resulted in possible global TC high-contrast imagery, TC stereoscopic imagery, and MI 9-band imagery in one nominal mission period. The SP will also acquire spectral line profiling data for nearly the entire lunar surface. The east-west interval of the SP strip data will be 3–4 km at the equator by the end of the mission and shorter at higher latitudes. We have proposed execution of SELENE roll cant operations three times during the nominal mission period to execute calibration site observations, and have reached agreement on this matter with the SELENE project. We present LISM global surface mapping experiments for instrumentation and operation plans. The ground processing systems and the data release plan for LISM data are discussed briefly.

References

  • Basilevsky, A. T., H. U. Keller, A. Nathues, U. Mall, H. Hiesinger, and M. Rosiek, Scientific Objectives and Selection of Targets for the SMART-1 Infrared Spectrometer (SIR), Planet. Space Sci., 52, 14, 1261–1285, 2004.

    Article  Google Scholar 

  • Butler, B. J., The Migration of Volatiles on the Surfaces of Mercury and the Moon, J. Geophys. Res., 102(E8), 19283–12291, 1997.

    Article  Google Scholar 

  • Demura, H., N. Hirata, H. Otake, M. Ohtake, A. Sugihara, M. Higa, T. Matsunaga, and J. Haruyama, Data Processing Flow and Products of LISM: Lunar Imager and SpectroMeter, 32nd Lunar Planet. Sci. Conf., abst. #11648, 2001.

    Google Scholar 

  • Feldman, W. C., A. B. Binder, B. L. Barraclough, and R. D. Belian, First results from the Lunar Prospector Spectrometers, 29th Lunar Planet. Sci. Conf., abst. #1936, 1998.

    Google Scholar 

  • Feldman, W. C., D. J. Lawrence, S. Maurice, R. C. Elphic, B. L. Barraclough, A. B. Binder, and P. G. Lucey, Classification of Lunar Terranes using Neutron and Thorium Gamma-ray Data, 30th Lunar Planet. Sci. Conf., abst. #2056, 1999.

    Google Scholar 

  • Feldman, W. C., S. Maurice, D. J. Lawrence, R. C. Little, S. L. Lawson, O. Gasnault, R. C. Wiens, B. L. Barraclough, R. C. Elphic, T. H. Prettyman, J. T. Steinberg, and A. B. Binder, Evidence forWater Ice Near the Lunar Poles, J. Geophys. Res., 106(E10), 23,231–23,251, 2001.

    Article  Google Scholar 

  • Giguere, T. A., B. R. Hawke, L. R. Gaddis, D. T. Blewett, J. J. Gillis-Davis, P. G. Lucey, G. A. Smith, P. D. Spudis, and G. J. Taylor, Remote Sensing Studies of the Dionysius Region of the Moon, J. Geophys. Res., 111(E6), doi:10.1029/2005JE002639, 2006.

  • Hapke, B., Theory of Reflectance and Emittance Spectroscopy, 262, Cambridge Univ. Press, 1993.

    Book  Google Scholar 

  • Haruyama, J., H. Otake, M. Ohtake, A. Shiraishi, N. Hirata, and T. Matsunaga, LISM (Lunar Imager/SpectroMeter) Mission for SELENE Project, 31st Lunar Planet. Sci. Conf., abst. #1317, 2000.

    Google Scholar 

  • Haruyama, J., H. Otake, and M. Ohtake, LISM Mission for SELENE Project, Proc. 22nd Int. Sym. Tec. Space Sci., 1686–1691, 2001.

    Google Scholar 

  • Haruyama, J., M. Ohtake, N. Hirata, R. Nakamura, and T. Matsunaga, Expected Performance of Lunar Imager/SpectroMeter on SELENE, 34th Lunar Planet. Sci. Conf., abst. #1565, 2003a.

    Google Scholar 

  • Haruyama, J., M. Ohtake, T. Matsunaga, N. Hirata, and LISM Working Group, Flight Model Performance of SELENE Terrain Camera, Proc. 23rd. Int. Sym. Tec. Space Sci., 1992–1996, 2003b.

    Google Scholar 

  • Haruyama, J., M. Ohtake, T. Matsunaga, and LISM Working Group, The Detectability of Degradation of Lunar Impact Crater by SELENE Terrain Camera, 35th Lunar Planet. Sci. Conf., abst. #1496, 2004.

    Google Scholar 

  • Haruyama, J., M. Ohtake, N. Hirata, R. Nakamura, and T. Matsunaga, Flight model performance of SELENE Terrain Camera (II), Proc. 25th Int. Sym. Tec. Space Sci., 857–862, 2005.

    Google Scholar 

  • Haruyama, J., M. Ohtake, T. Matsunaga, T. Morota, A. Yoshizawa, and LISM Working Group, Planned Digital Terrain Model Products from SELENE Terrain Camera Data, 37th Lunar Planet. Sci. Conf., abst. #1132, 2006a.

    Google Scholar 

  • Haruyama, J., M. Ohtake, T. Matsunaga, and LISM Working Group, Global High-resolution stereo mapping of the Moon with the SELENE Terrain Camera, in Adv. Geosci., 3: Planetary Science, World Scientific Publishing, edited by W.-H. Ip and A. Bhardwaj, pp. 101–108, 2006b.

    Google Scholar 

  • Haruyama, J., T. Matsunaga, T. Morota, C. Honda, M. Torii, Y. Yokota, H. Kawasaki, M. Ohtake, and LISM Working Group, Pre-Launch Operation Planning of Lunar Imager/Spectrometer (LISM) on SELENE, 38th Lunar Planet. Sci. Conf., abst. #1136, 2007.

    Google Scholar 

  • Head, J. W., Lunar volcanism in space and time, Rev. Geophys. Space Phys., 14, 265–300, 1976.

    Article  Google Scholar 

  • Hörz, F., R. A. Grieve, G. D. Heiken, P. D. Spudis, and A. B. Binder, Lunar Surface, Processes, in The Lunar Sourcebook: A User’s Guide to the Moon, edited by G. D. Heiken, D. Vaniman, and B. M. French, Lunar and Planet. Inst. and Cambridge Univ. Press, pp. 61–120, 1991.

    Google Scholar 

  • Hiesinger, H. and J. M. Head, New Views of Lunar Geosiceces: An Introduction and Overview, in New Views of the Moon, Rev. Min. Gechem., 60, 1–81, 2006.

    Article  Google Scholar 

  • Hiesinger, H., R. Jaumann, G. Neukum, J. W. Head, and U. Wolf, Ages and Stratigraphy of Mare Basalts on the Lunar Nearside, J. Geophys. Res., 105(E12), 29239–29275, 2000.

    Article  Google Scholar 

  • Hiesinger, H., J.W. Head, U. Wolf, R. Jaumann, and G. Neukum, Ages and Stratigraphy of Mare B Basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum, J. Geophys. Res., 108(E7), 5065, doi:10.1029/2002JE001985, 2003.

    Article  Google Scholar 

  • Iwata, T., N. Namiki, H. Hanada, H. Minamino, T. Takano, N. Kawano, K. Matsumoto, and S. Sasaki, SELENE Small Sub-Satellites for Lunar Gravity Observation, 38th Lunar Planet. Sci. Conf., abst. #1557, 2007.

    Google Scholar 

  • Jolliff, B. L., J. J. Gillis, L. A. Haskin, R. L. Korotev, and M. A. Wieczorek, Major Lunar Crustal Terrains: Surface Expression and Crust-mantle Origins, J. Geophys. Res., 105(E2), 4197–4216, 2001.

    Article  Google Scholar 

  • Kato, M., Y. Takizawa, and S. Sasaki, Selene Project Team, The SELENE Mission: Present Status and Science Goals, 38th Lunar Planet. Sci. Conf., abst. #1211, 2007.

    Google Scholar 

  • Lawrence, D. J., W. C. Feldman, R. C. Elphic, J. J. Hagerty, S. Maurice, G. W. McKinney, and T. H. Prettyman, Improved Modeling of Lunar Prospector Neutron Spectrometer Data: Implications for Hydrogen Deposits at the Lunar Poles, J. Geophys. Res., 111, E08001, doi:10.1029/2005JE002637, 2006.

    Google Scholar 

  • Matsunaga, T., M. Ohtake, Y. Makiko, and J. Haruyama, Development of a Visible and Near-infrared Spectrometer for Selenological and Engineering Explorer (SELENE), in Hyperspectral Remote Sensing of the Land and Atmosphere, edited by W. L. Smith and Y. Yasuoka, Proc. SPIE, 4151, 32–39, 2001.

    Article  Google Scholar 

  • Matsunaga, T., M. Ohtake, J. Haruyama, T. Sugihara, and LISM Working Group, Environmental Test Resutls and Their Implications to the Perfommance of SELENE Spectral Profiler, Proc. 23rd Int. Sym. Tec. Space Sci., 1922–1927, 2003.

    Google Scholar 

  • Melosh, H. J., Impact Cratering: A Geological Process, Oxford University Press, 1989.

    Google Scholar 

  • Namiki, N., H. Hanada, T. Tsubokawa, N. Kawano, M. Ooe, K. Heki, T. Iwata, M. Ogawa, and T. Takano, Selenodetic Experiments of SELENE: Relay Subsatellite, Differential VLBI, and Laser Altimeter, Adv. Space Res., 23, 11, 1817–1820, 1999.

    Article  Google Scholar 

  • Neukum, G., B. A. Ivanov, and W. K. Hartmann, Cratering records in the inner solar system in relation to the lunar reference system, Space Sci. Rev., 96, 55–86, 2001.

    Article  Google Scholar 

  • Nozette, S. and the Clementine team, The Clementine Mission to the Moon: Scientific Overview, Science, 266, 1835–1839, 1994.

    Article  Google Scholar 

  • Nyquist, L. E. and C.-Y. Shih, The isotopic record of lunar volcanism, Geochim. Cosmochim. Acta, 56, 2213–2234, 1992.

    Article  Google Scholar 

  • Ohtake, M., J. Haruyama, and T. Matsunaga, Scientific Goals and Performance of Multiband Imager for the SELENE mission, Proc. 23rd Int. Sym. Tec. Space Sci., 1997–2000, 2003.

    Google Scholar 

  • Ohtake, M., J. Haruyama, T. Matsunaga, T. Morota, Y. Yokota, C. Honda, A. Yamamoto, T. Arai, and H. Takeda, Objectives of the SELENE Multiband Imager and Spectral Study of Dho489, 38th Lunar Planet. Sci. Conf., abst. #1829, 2007.

    Google Scholar 

  • Pieters, C. M., Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy, in Remote Geochemical Analysis Elemental and Mineralogical Composition, edited by C. M. Pieters and P. A. J. Englert, Cambridge University Press, Cambridge, pp. 309–339, 1993.

    Google Scholar 

  • Pieters, C. M., L. Gaddis, B. Jolliff, and M. Duke, Rock Types of South Pole-Aitken Basin and Extent of Basaltic Volcanism, J. Geophys. Res., 106(E11), 28001–28022, 2001.

    Article  Google Scholar 

  • Sasaki, S., Y. Iijima, K. Tanaka, M. Kato, M. Hashimoto, H. Mizutani, and Y. Takizawa, The SELENE mission: Goals and status, Adv. Space Res., 31(11), 2335–2340, 2003.

    Article  Google Scholar 

  • Starukhina, L. V., Polar Regions of the Moon as a Potential Repository of Solar-Wind-Implanted Gases, Adv. Space Res., 37(1), 50–58, 2006.

    Article  Google Scholar 

  • Starukhina, L. V. and Y. G. Shkuratov, The lunar poles: water ice or chemically trapped hydrogen, Icarus, 147, 585–587, 2000.

    Article  Google Scholar 

  • Tompkins, S. and C. M. Pieters, Mineralogy of the Lunar Crust: Results from Clementine, Meteorit. Planet. Sci., 34(1), 25–41, 1999.

    Article  Google Scholar 

  • Wilhelms, D. E., The Geologic History of the Moon, U.S. Geol. Surv. Prof. Pap., 1348, 302 pp, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Junichi Haruyama.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Haruyama, J., Matsunaga, T., Ohtake, M. et al. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planet Sp 60, 243–255 (2008). https://doi.org/10.1186/BF03352788

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352788

Key words

  • Moon
  • camera
  • imagery
  • multi-band
  • spectral
  • stereo