Skip to main content

Volume 60 Supplement 4

Special Issue: Lunar Science with the SELENE “Kaguya” Mission-Prelaunch Studies-

Numerical estimation of lunar X-ray emission for X-ray spectrometer onboard SELENE

Abstract

We conducted a numerical estimation of lunar X-ray spectra, which is applicable for lunar X-ray fluorescence observations using an X-ray spectrometer (XRS) onboard the SELENE orbiter, with an improved simulation model. We investigated the integration times of measurements for six elements (Mg, Al, Si, Ca, Ti, and Fe) to achieve signal-to-background ratio of over 10 under various solar conditions. The results of these calculations indicate that expected along-the-track spatial resolutions of a single orbital path for Mg, Al and Si will be <90 km and 20 km under normal and active Sun conditions, respectively. Ca, Ti and Fe will be also detectable with a spatial resolution of 20 km during the periods active solar flares over M1 class happen to occur.

References

  • Adler, I. and J. I. Trombka, Orbital chemistry—Lunar surface analysis from the X-ray and gamma ray remote sensing experiments, Phys. Chem. Earth, 10, 17–43, 1977.

    Article  Google Scholar 

  • Adler, I., J. I. Trombka, J. Gerard, P. Lowman, R. Lamothe, R. Schmadebeck, H. Blodget, E. Eller, L. Yin, R. Lamothe, P. Gorenstein, and P. Bjorkholm, Apollo 15 geochemical X-ray fluorescence experiment: Preliminary report, Science, 175, 436–440, 1972a.

    Article  Google Scholar 

  • Adler, I., J. I. Trombka, J. Gerard, P. Lowman, R. Schmadebeck, H. Blodget, E. Eller, L. Yin, R. Lamothe, G. Osswald, P. Gorenstein, P. Bjorkholm, H. Gursky, and B. Harris, Apollo 16 geochemical X-ray fluorescence experiment: Preliminary Report, Science, 177, 256–259, 1972b.

    Article  Google Scholar 

  • Adler, I., J. I. Trombka, L. I. Yin, P. Gorenstein, P. Bjorkholm, and J. Gerard, Lunar Composition from Apollo Orbital Measurements, Naturwissenschaften, 60, 231–242, 1973a.

    Article  Google Scholar 

  • Adler, I., J. I. Trombka, R. Schmadebeck, P. Lowman, H. Blodget, L. Yin, and E. Eller, Results of the Apollo 15 and 16 X-ray experiment, Proc. Lunar Sci. Conf., 4, 2783–2791, 1973b.

    Google Scholar 

  • Bearden, J. A., X-ray wavelengths, Rev. Mod. Phys., 39, 78–124, 1967.

    Article  Google Scholar 

  • Brusa, D., G. Stutz, J. A. Riveros, J. M. Fernández-Varea, and F. Salvat, Fast sampling algorithm for the simulation of photon Compton scattering, Nucl. Instrum. Methods Phys. Res. A, 379, 167–175, 1996.

    Article  Google Scholar 

  • Chantler, C. T., Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft X-ray (Z=30–36, Z=60–89, E=0.1 keV–10 keV), addressing convergence issues of earlier work, J. Phys. Chem. Ref. Data, 29, 597–1056, 2000.

    Article  Google Scholar 

  • Chantler, C. T., K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, X-ray form factor, attenuation and scattering tables (version 2.1), [Online] Available: http://physics.nist.gov/ffast [2007, March], National Institute of Standards and Technology, Gaithersburg, MD, 2005.

    Google Scholar 

  • Clark, P. E., X-ray spectrometry for remote exploration of mercury and the Moon, Adv. Space Res., 19, 1539–1549, 1997.

    Article  Google Scholar 

  • Clark, P. E. and J. I. Trombka, Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface, J. Geophys. Res., 102(E7), 16,361–16,384, 1997.

    Article  Google Scholar 

  • Cromer, D. T. and J. T. Waber, Atomic scattering factors for X-rays, in International Tables for X-Ray Crystallography (Vol. 4), edited by J. A. Ibers and W. C. Hamilton, The Kynoch Press, Birmingham, 1974.

    Google Scholar 

  • Grande, M., R. Browning, N. Waltham, D. Parker, S. K. Dunkin, B. Kent, B. Kellett, C. H. Perry, B. Swinyard, A. Perry, J. Feraday, C. Howe, G. McBride, K. Phillips, J. Huovelin, P. Muhli, P. J. Hakala, O. Vilhu, J. Laukkanen, N. Thomas, D. Hughes, H. Alleyne, M. Grady, R. Lundin, S. Barabash, D. Baker, P. E. Clark, C. D. Murray, J. Guest, I. Casanova, L. C. D’Uston, S. Maurice, B. Foing, D. J. Heather, V. Fernandes, K. Muinonen, S. S. Russell, A. Christou, C. Owen, P. Charles, H. Koskinen, M. Kato, K. Sipila, S. Nenonen, M. Holmstrom, N. Bhandari, R. Elphic, and D. Lawrence, The D-CIXS X-ray mapping spectrometer on SMART-1, Planet. Space Sci., 51, 427–433, 2003.

    Article  Google Scholar 

  • Grande, M., B. J. Kellett, C. Howe, C. H. Perry, B. Swinyard, S. Dunkin, J. Huovelin, L. Alha, L. C. D’Uston, S. Maurice, O. Gasnault, S. Couturier-Doux, S. Barabash, K. H. Joy, I. A. Crawford, D. Lawrence, V. Fernandes, I. Casanova, M. Wieczorek, N. Thomas, U. Mall, B. Foing, D. Hughes, H. Alleyne, S. Russell, M. Grady, R. Lundin, D. Baker, C. D. Murray, J. Guest, and A. Christou, The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon—First results, Planet. Space Sci., 55, 494–502, 2007.

    Article  Google Scholar 

  • Hayakawa, S. and M. Matsuoka, Characteristic X-rays from the lunar surface, Report. Ionosphere and Space Res. in Japan, 16, 341–357, 1962.

    Google Scholar 

  • Hubbell, J. H., P. N. Trehan, N. Singh, B. Chand, D. Mehta, M. L. Garg, R. R. Garg, S. Singh, and S. Puri, A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields, J. Phys. Chem. Ref. Data, 23, 339–364, 1994.

    Article  Google Scholar 

  • Kato, M., S. Sasaki, K. Tanaka, Y. Iijima, and Y. Takizawa, The japanese lunar mission SELENE: Science goals and present status, Adv. Space Res., 2007 (in press).

    Google Scholar 

  • Kuwada, Y., T. Okada, and H. Mizutani, Particle size effect in X-ray fluorescence, Proc. ISAS Lunar Planet. Symp., edited by H. Mizutani and M. Kato, ISAS, Sagamihara, Japan, 30, 212–215, 1997.

    Google Scholar 

  • Maruyama, Y., K. Ogawa, T. Okada, and M. Kato, Particle size effect in X-ray fluorescence and its implication to planetary XRF spectroscopy, Proc. Lunar Planet. Sci. Conf., XXXVIII, #1186, 2007.

    Google Scholar 

  • Maruyama, Y., K. Ogawa, T. Okada, and M. Kato, Laboratory experiments of particle size effect in X-ray fluorescence and implications to remote X-ray spectrometry of lunar regolith surface, Earth Planets Space, 60, this issue, 293–297, 2008.

    Article  Google Scholar 

  • McKay, D. S., G. Heiken, A. Basu, G. Blanford, S. Simon, R. Reedy, B. M. French, and J. Papike, The lunar regolith, in Lunar Sourcebook, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, Cambridge University Press, 1991.

    Google Scholar 

  • Okada, T., Basic study for XRF spectrometry of planetary surfaces, PhD thesis, University of Tokyo, Japan, 1996 (in Japanese).

    Google Scholar 

  • Okada, T., M. Kato, Y. Yamashita, K. Shirai, Y. Yamamoto, T. Matsuda, H. Tsunemi, and S. Kitamoto, Lunar X-ray spectrometer experiment on the SELENE mission, Adv. Space Res., 30, 1909–1914, 2002.

    Article  Google Scholar 

  • Ribberfors, R. and K. F. Berggren, Incoherent-X-ray-scattering function and cross section (σ/Ω’)incoh by means of a pocket calculator, Phys. Rev. A, 26, 3325–3333, 1982.

    Article  Google Scholar 

  • Salem, S. I., S. L. Panossian, and R. A. Krause, Experimental K and L relative X-ray emission rates, Atom. Data Nucl. Data Tables, 14, 91–109, 1974.

    Article  Google Scholar 

  • Shirai, K., T. Okada, Y. Yamamoto, T. Arai, K. Ogawa, H. Shiraishi, M. Iwasaki, M. Arakawa, M. Grande, and M. Kato, Instrumentation and performance evaluation of the XRS on SELENE orbiter, Earth Planets Space, 60, this issue, 277–281, 2008.

    Article  Google Scholar 

  • Shiraiwa, T. and N. Fujino, Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis, Japanese J. Appl. Phys., 5, 886–899, 1966.

    Article  Google Scholar 

  • Taylor, G. J., P. Warren, G. Ryder, J. Delano, C. Pieters, and G. Lofgren, Lunar rocks, in Lunar Sourcebook, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, Cambridge University Press, 1991.

    Google Scholar 

  • Tompkins, S. and C. M. Pieters, Mineralogy of the lunar crust: Results from Clementine, Meteorit. & Planet. Sci., 34, 25–41, 1999.

    Article  Google Scholar 

  • Wieczorek, M. A. and M. T. Zuber, The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling, Geophys. Res. Lett., 28, 4023–4026, 2001.

    Article  Google Scholar 

  • Yamamoto, Y., T. Okada, H. Shiraishi, K. Shirai, T. Arai, K. Ogawa, K. Hosono, M. Arakawa, and M. Kato, Current status of X-ray spectrometer development in the SELENE project, Adv. Space Res., 2007 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Ogawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Ogawa, K., Okada, T., Shirai, K. et al. Numerical estimation of lunar X-ray emission for X-ray spectrometer onboard SELENE. Earth Planet Sp 60, 283–292 (2008). https://doi.org/10.1186/BF03352793

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352793

Key words