Skip to main content

Volume 60 Supplement 4

Special Issue: Lunar Science with the SELENE “Kaguya” Mission-Prelaunch Studies-

Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE

Abstract

The high-precision gamma-ray spectrometer (GRS) on the lunar polar orbiter SELENE is designed to measure 200 keV—12 MeV gamma rays in order to determine elemental compositions of the lunar surface. The GRS consists of a large germanium (Ge) crystal as a main detector and a massive bismuth germanate crystal and a plastic scintillator as anticoincidence detectors. The Ge detector is cooled by a Stirling cryocooler with its compressor attached to a passive radiator facing the cold space. The cooling system maintains the Ge detector below 90 K during the observation. The flight model of the GRS has achieved an energy resolution of 3.0 keV (FWHM) at 1333 keV. Energy spectra obtained by the GRS will show sharp gamma-ray lines whose energies identify the elements and whose intensities determine the concentrations of the elements, permitting global mapping of the elemental abundances in the sub-surface of the Moon. The elemental maps obtained by the GRS with such high-energy resolution enable us to study lunar geoscience problems.

References

  • Arnold, J. R., A. E. Metzger, E. C. Anderson, and M. A. Van Dilla, Gamma rays in space, Ranger 3, J. Geophys. Res., 67, 4878–4880, 1962.

    Article  Google Scholar 

  • Berezhnoy, A. A., N. Hasebe, T. Hiramoto, T. Miyachi, and N. Yamashita, ‘Possibility of H and S detection on the Moon by SELENE mission’, LPSC26th, 1210, 2003a.

    Google Scholar 

  • Berezhnoy, A. A., N. Hasebe, B. A. Klumov, and T. Hiramoto, Possibility of the presence of S, SO2 and CO2 at the poles of the Moon, Publ. Astron. Soc. Jpn., 55, 859–870, 2003b.

    Article  Google Scholar 

  • Bielefeld, M. J., R. C. Reedy, A. E. Metzger, J. I. Trombka, and J. R. Arnold, Surface chemistry of selected lunar regions, Proc. Lunar Sci. Conf., 7th, 2661–2676, 1976.

    Google Scholar 

  • Binder, A., Lunar Prospector: Overview, Science, 281, 1475, 1998.

    Article  Google Scholar 

  • Boynton, W. V., W. C. Feldman, I. G. Mitrofanov, L. G. Evans, R. C. Reedy, S. W. Squyres, R. Starr, J. I. Trombka, C. d’Uston, J. R. Arnold, P. A. J. Englert, A. E. Metzger, H. Wänke, J. Brückner, D. M. Drake, C. Shinohara, C. Fellows, D. K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward, H. Barthe, K. R. Fuller, S. A. Storms, G.W. Thornton, J. L. Longmire, M. L. Litvak, and A. K. Ton’chev, The Mars Odyssey gamma-ray spectrometer instrument suite, Space Sci. Rev., 110, 37–83, 2004.

    Article  Google Scholar 

  • Campbell, D. B., B. A. Campbell, L. M. Carter, J.-L. Margot, and N. J. S. Stacy, No evidence for thick deposits of ice at the lunar south pole, Nature, 443, 835–837, 2006.

    Article  Google Scholar 

  • Evans, L. G., R. C. Reedy, and J. I. Trombka, Introduction to planetary remote sensing gamma ray spectroscopy, in remote geochemical analyses: Elemental and mineralogical composition, edited by C. M. Pieters and P. A. J. Englert, 167–198, Cambridge Univ. Press, New York, 1993.

    Google Scholar 

  • Evans, L. G., R. C. Reedy, R. D. Starr, K. E. Kerry, and W. V. Boynton, Analysis of gamma-ray spectra measured by Mars Odyssey, J. Geophys. Res., 112, E3S04, 2007.

    Google Scholar 

  • Feldman, W. C., B. L. Barraclough, K. R. Fuller, D. L. Lawrence, S. Maurice, M. C. Miler, T. H. Prettyman, and A. B. Binder, The Lunar Prospector gamma-ray and neutron spectrometers, Nucl. Instrum and Meth., A422, 562–566, 1999.

    Article  Google Scholar 

  • Feldman, W. C., D. L. Lawrence, R. C. Elphic, B. L. Barraclough, S. Maurice, I. Genetay, and A. B. Binder, Polar hydrogen deposits on the Moon, J. Geophys. Res., 105(E2), 4175–4195, 2000.

    Article  Google Scholar 

  • Feldman, W. C., S. Maurice, D. L. Lawrence, R. C. Little, S. Lawson, O. Gasnault, R. C. Wiens, B. L. Barraclough, R. C. Elphic, T. H. Prettyman, J. T. Steinberg, and A. B. Binder, Evidence for water ice near poles, J. Geophys. Res., 106(E10), 23231–23251, 2001.

    Article  Google Scholar 

  • Feldman, W. C., K. Ahola, B. L. Barraclough, R. D. Belian, R. K. Black, R. C. Elphic, D. T. Everett, K. R. Fuller, J. Kroesche, D. J. Lawrence, S. L. Lawson, J. L. Longmire, S. Maurice, M. C. Miller, T. H. Prettyman, S. A. Storms, and G.W. Thornton, Gamma-ray, neutron, and alpha-particle spectrometers for the Lunar Prospector mission, J. Geophys. Res., 109, E07S06, doi:10.1029/2003JE002207, 2004.

    Google Scholar 

  • Foing, B. H., M. Grande, J. Huovelin, J.-L. Josset, H. U. Keller, A. Nathues, A. Malkki, G. Noci, B. Kellett, S. Beauvivre, P. Cerroni, P. Pinet, H. Makkinen, U. Mall, M. Almeida, D. Frew, J. Volp, M. Sarkarati, D. Heather, J. Zender, P. McMannamon, and O. Camino, SMART-1 Mission: Highlights of lunar results, Lunar Planet. Sci. Conf. XXXVIII, Abstract #1338, 2007.

    Google Scholar 

  • Gillis, J. J., B. L. Jolliff, and R. C. Elphic, A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations, J. Geophys. Res., 108(E2), 3–1, 2003.

    Google Scholar 

  • Gillis, J. J., B. L. Jolliff, and R. L. Korotev, Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from Lunar Prospector and Clementine data, Geochim. Cosmochim. Acta, 68(18), 3791–3805, 2004.

    Article  Google Scholar 

  • Gilmore, G. and J. D. Hemingway, Practical gamma-ray spectrometry, John Wiley & Sons, Chichester, 1995.

    Google Scholar 

  • Goldsten, J. O., E. A. Rhodes, W. V. Boynton, W. C. Feldman, D. J. Lawrence, J. I. Trombka, D. M. Smith, L. G. Evans, J. White, N. W. Madden, P. C. Berg, G. A. Murphy, R. S. Gurnee, K. Strohbehn, B. D. Williams, E. D. Schaefer, C. A. Monaco, C. P. Cork, J. D. Eckels, W. O. Miller, M. T. Burks, L. B. Hagler, S. J. DeTeresa, and M. C. Witte, The MESSENGER gamma-ray and neutron spectrometer, Space Sci. Rev., 131, 339–391, doi:10.1007/s11214-007-9262-7, 2007.

    Article  Google Scholar 

  • Hasebe, N., N. Yamashita, O. Okudaira, S. Kobayashi, H. Yamamoto, T. Ishizaki, K. Hirano, K. Sakurai, T. Miyachi, M. Miyajima, M. Fujii, M.-N. Kobayashi, T. Takashima, E. Shibamura, O. Gasnault, S. Maurice, C. d’Uston, R. Reedy, and M. Grande, The precision gammaray spectrometer for lunar polar orbiter SELENE, J. Adv. Space Res., doi:10.1016/j.asr.2007.05.046, 2007 (in press).

    Google Scholar 

  • Johnson, J. R., T. D. Swindle, and P. G. Lucey, Estimated solar windimplanted helium-3 distribution on the Moon, Geophys. Res. Lett., 26(3), 385–388, 1999.

    Article  Google Scholar 

  • Jolliff, B. L., J. J. Gillis, L. A. Haskin, R. L. Korotev, and M. A. Wieczorek, Major lunar crustal terranes: Surface expressions and crust-mantle origins, J. Geophys. Res., 105(E2), 4197–4216, 2000.

    Article  Google Scholar 

  • Kobayashi, M.-N., N. Hasebe, T. Miyachi, T. Doke, J. Kikuchi, H. Okada, A. Oka, O. Okudaira, H. Souri, N. Yamashita, E. Shibamura, T. Kashiwagi, T. Takashima, K. Narasaki, K. Tsurumi, K. Mori, C. d’Uston, S. Maurice, M. Grande, and R. C. Reedy, High-purity germanium gammaray spectrometer with Stirling cycle cryocooler, Adv. Space Res., 30(8), 1927–1931, 2002.

    Article  Google Scholar 

  • Kobayashi, M.-N., N. Hasebe, T. Hiramoto, T. Miyachi, S. Murasawa, H. Okada, O. Okudaira, N. Yamashita, A. A. Berezhnoy, E. Shibamura, T. Takashima, C. d’Uston, K. Narasaki, K. Tsurumi, H. Kaneko, M. Nakazawa, K. Mori, and M. Fujii, Germanium detector with Stirling cryocooler for lunar gamma-ray spectroscopy, Nucl. Instrum. and Meth., A548, 401–410, 2005.

    Article  Google Scholar 

  • Lawrence, D. J., W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic, S. Maurice, and D. R. Thomsen, Global Elemental Maps of the Moon: The Lunar Prospector gamma-ray spectrometer, Science, 281, 1484–1489, 1998.

    Article  Google Scholar 

  • Lawrence, D. J., S. Maurice, and W. C. Feldman, Software Interface Specification (SIS) for the Lunar Prospector Spectrometer Planetary Data System Files, Version V001 and V002, NASA Planetary Data System, Geosciences Node (http://pds-geosciences.wustl.%20edu/missions/lunarp/index.htm), Washington University, St. Louis and Los Alamos Nat. Lab. Rep. LAUR-99-2753 and LAUR-99-2754, Los Alamos, N. M., 1999.

    Google Scholar 

  • Lawrence, D. J., W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic, S. Maurice, M. C. Miller, and T. H. Prettyman, Thorium abundances on the lunar surface, J. Geophys. Res., 105, 20307–20331, 2000.

    Article  Google Scholar 

  • Lawrence, D. J., W. C. Feldman, R. C. Elphic, R. C. Little, T. H. Prettyman, S. Maurice, P. G. Lucey, and A. B. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers, J. Geophys. Res., 107(E12), 13, 2002.

    Google Scholar 

  • Lawrence, D. J., W. C. Feldman, R. C. Elphic, J. J. Hagerty, S. Maurice, G. W. McKinney, and T. H. Prettyman, Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles, J. Geophys. Res., 111(E8), E08001

    Google Scholar 

  • Lucey, P. G., Mineral maps of the Moon, Geophys. Res. Lett., 31, L08701, 2004.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, and B. L. Jolliff, Lunar iron and titanium abundance algorithms based on final processing Clementine UVVIS images, J. Geophys. Res., 105, 20297–20305, 2000.

    Article  Google Scholar 

  • Metzger, A. E. and J. R. Arnold, Gamma ray spectroscopic measurements of Mars, Appl. Optics, 9, 1289–1303, 1970.

    Article  Google Scholar 

  • Metzger, A. E., J. I. Trombka, L. E. Peterson, R. C. Reedy, and J. R. Arnold, Lunar surface radioactivity: Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments, Science, 179, 800–803, 1973.

    Article  Google Scholar 

  • Metzger, A. E., R. H. Parker, J. R. Arnold, R. C. Reedy, and J. I. Trombka, Preliminary design and performance of an advanced gamma-ray spectrometer for future orbital missions, Proc. Lunar Sci. Conf., 6th, 2769–2784, 1975.

    Google Scholar 

  • Nakamura, Y., G. V. Latham, and H. J. Dorman, Apollo Lunar seismic experiment-final summary, Proc. 13th Lunar and Planetary Sci. Conf., J. Geophys. Res., Suppl., 87, A117–A123, 1982.

    Article  Google Scholar 

  • Nozette, S., P. Rustan, L. P. Pleasance, J. F. Kordas, I. T. Lewis, H. S. Park, R. E. Priest, D. M. Horan, P. Regeon, C. L. Lichtenberg, E. M. Shoemaker, E.M. Eliason, A. S. McEwen, M. S. Robinson, P. D. Spudis, C. H. Acton, B. J. Buratti, T. C. Duxbury, D. N. Baker, B. M. Jakosky, J. E. Blamont, M. P. Corson, J. H. Resnick, C. J. Rollins, M. E. Davies, P. G. Lucey, E. Malaret, M. A. Massie, C. M. Pieters, R. A. Reisse, R. A. Simpson, D. E. Smith, T. C. Sorenson, R. W. Vorder Breugge, and M. T. Zuber, The Clementine mission to the Moon—Scientific overview, Science, 266, 1835–1839, 1994.

    Article  Google Scholar 

  • Nozette, S., P. D. Spudis, M. S. Robinson, D. B. J. Bussey, C. Lichtenberg, and R. Bonner, Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar south pole, J. Geophys. Res., 106, 23253–23266, 2001.

    Article  Google Scholar 

  • Prettyman, T. H., J. J. Hagerty, R. C. Elphic, W. C. Feldman, D. J. Lawrence, G. W. McKinney, and D. T. Vaniman, Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector, J. Geophys. Res., 111, E12007, 2006.

    Article  Google Scholar 

  • Reedy, R. C., Planetary gamma-ray spectroscopy, Proc. Lunar Sci. Conf., 9th, 2961–2984, 1978.

    Google Scholar 

  • Reedy, R. C., J. R. Arnold, and J. I. Trombka, Expected gamma ray emission spectra from the lunar surface as a function of chemical composition, J. Geophys. Res., 78, 5347–5866, 1973.

    Google Scholar 

  • Sasaki, S., Y. Iijima, K. Tanaka, M. Kato, M. Hashimoto, H. Mizutani, and Y. Takizawa, The SELENE mission: Goals and status, Adv. Space Res., 31, 2335–2340, 2003.

    Article  Google Scholar 

  • Shearer, C. K. and J. J. Papike, Magmatic evolution of the Moon, Am. Mineral., 84, 1469–1497, 1999.

    Google Scholar 

  • Solomon, S. C., R. L. McNutt, R. E. Gold, M. H. Acuña, D. N. Baker, W. V. Boynton, C. R. Chapman, A. F. Cheng, G. Gloeckler, J. W. Head III, S. M. Krimigis, W. E. McClintock, S. L. Murchie, S. J. Peale, R. J. Phillips, M. S. Robinson, J. A. Slavin, D. E. Smith, R. G. Strom, J. I. Trombka, and M. T. Zuber, The MESSENGER mission to Mercury: Scientific objectives and implementation, Planet. Space Sci., 49, 1445–1465, 2001.

    Article  Google Scholar 

  • Sun, H. X. and S. W. Dai, Mission objectives and payloads for the first lunar exploration of China, Acta Astronautica, 57, 561–565, 2005.

    Article  Google Scholar 

  • Surkov, Yu. A., Nuclear physical methods of analysis in lunar and planetary investigations, Isotopenpraxis, 20, 321–329, 1984.

    Google Scholar 

  • Takeda, H., A. Yamaguchi, D. D. Bogard, Y. Karouji, M. Ebihara, M. Ohtake, K. Saiki, and T. Arai, Magnesian anorthosites and a deep crustal rock from the farside crust of the Moon, Earth Planet. Sci. Lett., 247, 171–184, 2006.

    Article  Google Scholar 

  • Warren, P. H., ‘New’ lunar meteorites: Imprecations for composition of the global lunar surface, lunar crust, and the bulk Moon, Meteor. Planet. Sci., 40, 477–506, 2005.

    Article  Google Scholar 

  • Yamashita, N., N. Hasebe, T. Miyachi, M. Kobayashi, O. Okudaira, S. Kobayashi, T. Ishizaki, K. Sakurai, M. Miyajima, R. C. Reedy, C. d’Uston, S. Maurice, and O. Gasnault, Complexities of gamma-ray line intensities from the lunar surface, Earth Planets Space, 60, this issue, 313–319, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Kobayashi.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Hasebe, N., Shibamura, E., Miyachi, T. et al. Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE. Earth Planet Sp 60, 299–312 (2008). https://doi.org/10.1186/BF03352795

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352795

Key words

  • Moon
  • gamma-ray spectroscopy
  • chemical composition
  • lunar formation and evolution
  • SELENE (KAGUYA)
  • GRS