Skip to main content

Volume 60 Supplement 4

Special Issue: Lunar Science with the SELENE “Kaguya” Mission-Prelaunch Studies-

Plasma wave observation using waveform capture in the Lunar Radar Sounder on board the SELENE spacecraft

Abstract

The waveform capture (WFC) instrument is one of the subsystems of the Lunar Radar Sounder (LRS) on board the SELENE spacecraft. By taking advantage of a moon orbiter, the WFC is expected to measure plasma waves and radio emissions that are generated around the moon and/or that originated from the sun and from the earth and other planets. It is a high-performance and multifunctional software receiver in which most functions are realized by the onboard software implemented in a digital signal processor (DSP). The WFC consists of a fast-sweep frequency analyzer (WFC-H) covering the frequency range from 1 kHz to 1 MHz and a waveform receiver (WFC-L) in the frequency range from 10 Hz to 100 kHz. By introducing the hybrid IC called PDC in the WFC-H, we created a spectral analyzer with a very high time and frequency resolution. In addition, new techniques such as digital filtering, automatic filter selection, and data compression are implemented for data processing of the WFC-L to extract the important data adequately under the severe restriction of total amount of telemetry data. Because of the flexibility of the instruments, various kinds of observation modes can be achieved, and we expect the WFC to generate many interesting data.

References

  • Analog Devices Inc., AD9260 data sheet, 2000.

    Google Scholar 

  • Anderson, R. R., D. A. Gurnett, H. Matsumoto, K. Hashimoto, H. Kojima, Y. Kasaba, M. L. Kaiser, G. Rostoker, J.-L. Bougeret, J.-L. Steinberg, I. Nagano, and H. Singer, Observations of low frequency terrestrial type III bursts by GEOTAIL and WIND and their association with isolated geomagnetic disturbances detected by ground and space-borne instruments, in Planetary Radio Emissions IV, Proc. Graz Conf., edited by H. O. Rucker, S. J. Bauer, and A. Lecacheux, Austrian Academy of Sciences Press, Vienna, 241–250, 1997.

    Google Scholar 

  • Bougeret, J.-L., M. L. Kaiser, P. J. Kellogg, R. Manning, K. Goetz, S. J. Monson, N. Monge, L. Friel, C. A. Meetre, C. Perche, L. Sitruk, and S. Hoang, WAVES: The radio and plasma wave investigation on the wind spacecraft, Space Sci. Rev., 71, 231–263, 1995.

    Article  Google Scholar 

  • Farrell, W. M., M. L. Kaiser, and J. T. Steinberg, Electrostatic instability in the central lunar wake: A process for replenishing the plasma void?, Geophys. Res. Lett., 24(9), 1135–1138, 1997.

    Article  Google Scholar 

  • Hashimoto, K., H. Matsumoto, T. Murata, M. L. Kaiser, and J.-L. Bougeret, Comparison of AKR simultaneously observed by the GEOTAIL and WIND spacecraft, Geophys. Res. Lett., 25(6), 853–856, 1998.

    Article  Google Scholar 

  • Hashimoto, K., W. Calvert, and H. Matsumoto, Kilometric continuum detected by GEOTAIL, J. Geophys. Res., 104(A12), 28,645–28,656, 1999.

    Article  Google Scholar 

  • Hashimoto, K., H. Iwai, Y. Ueda, H. Kojima, and H. Matsumoto, Software wave receiver for the SS-520-2 rocket experiment, IEEE Trans. Geosci. and Remote Sens., 41(11), 2638–2647, 2003.

    Article  Google Scholar 

  • Hashimoto, K., R. R. Anderson, J. L. Green, and H. Matsumoto, Source and propagation characteristics of kilometric continuum observed with multiple satellites, J. Geophys. Res., 110(A09229), doi: 10.1029/2004JA010729, 2005.

    Google Scholar 

  • Hashimoto, K., J. L. Green, R. R. Anderson, and H. Matsumoto, Review of Kilometric Continuum, Lecture Notes in Physics, Springer-Verlag, Berlin Heidelberg, 687, 37–54, 2006.

    Google Scholar 

  • Intersil Corporation, HSP50214B data sheet, 2000.

    Google Scholar 

  • Kasaba, Y., H. Kojima, H. Matsumoto, and T. Murata, Search for Jovian Hectometric and Kilometric radiation by GEOTAIL spacecraft during the impact of Comet Shoemaker-Levy 9, J. Geomag. Geoelectr., 48(4), 361–370, 1996.

    Article  Google Scholar 

  • Kasaba, Y., H. Matsumoto, K. Hashimoto, R. R. Anderson, J.-L. Bougeret, M. L. Kaiser, and X. Y. Wu, Remote sensing of the plasmapause during substorms: GEOTAIL observation of nonthermal continuum enhancement, J. Geophys. Res., 103(A9), 20,389–20,405, 1998.

    Article  Google Scholar 

  • Kasaba, Y., H. Matsumoto, Y. Omura, R. R. Anderson, T. Mukai, Y. Saito, T. Yamamoto, and S. Kokubun, Statistical studies of plasma waves and backstreaming electrons in the terrestrial electron foreshock observed by GEOTAIL, J. Geophys. Res., 105(A1), 79–103, 2000.

    Article  Google Scholar 

  • Kasahara, Y., H. Matsumoto, and H. Kojima, Type III radio bursts in the inhomogeneous interplanetary space observed by GEOTAIL, Radio Sci., 36(6), 1701–1711, 2001.

    Article  Google Scholar 

  • Kellogg, P. J., K. Goetz, and S. J. Monson, Observations of plasma waves during a traversal of the moon’s wake, Geophys. Res. Lett., 23(10), 1267–1279, 1996.

    Article  Google Scholar 

  • Kojima, H., M. Ashour-Abdalla, W. R. Paterson, H. Matsumoto, L. A. Frank, R. R. Anderson, R. L. Richard, S. Kokubun, and T. Yamamoto, Generation of the narrowband electrostatic noise in the geomagnetic tail: GEOTAIL observations, J. Geophys. Res., 106(A5), 8483–8488, 2001.

    Article  Google Scholar 

  • Kuncic, Z. and I. H. Cairns, Radio emission from mini-magnetospheres on the moon, Geophys. Res. Lett., 31(L11809), doi:10.1029/2004GL 020008, 2004.

  • Kurata, M., H. Tsunakawa, Y. Saito, H. Shibuya, M. Matsushima, and H. Shimizu, Mini-magnetosphere over the Reiner Gamma magnetic anomaly region on the moon, Geophys. Res. Lett., 32(L24205), doi: 10.1029/2005GL024097, 2005.

  • Mangeney, A., C. Salem, C. Lacombe, J.-L. Bougeret, C. Perche, R. Manning, P. J. Kellogg, K. Goetz, S. J. Monson, and J.-M. Bosqued, WIND observations of coherent electrostatic waves in the solar wind, Ann. Geophysicae, 17(3), 307–320, 1999.

    Article  Google Scholar 

  • Matsumoto, H., I. Nagano, R. R. Anderson, H. Kojima, K. Hashimoto, M. Tsutsui, T. Okada, I. Kimura, Y. Omura, and M. Okada, Plasma wave observations with GEOTAIL spacecraft, J. Geomag. Geoelectr., 46(1), 59–95, 1994a.

    Article  Google Scholar 

  • Matsumoto, H., H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Electrostatic solitary waves (ESW) in the Magnetotail: BEN wave forms observed by GEOTAIL, Geophys. Res. Lett., 21(25), 2915–2918, 1994b.

    Article  Google Scholar 

  • Matsumoto, H., T. Okada, K. Hashimoto, I. Nagano, S. Yagitani, M. Tsutsui, K. Kasaba, K. Tsuruda, H. Hayakawa, A. Matsuoka, S. Watanabe, H. Ueda, I. Kimura, Y. Kasahara, Y. Omura, M. Matsumura, T. Imachi, K. Ishisaka, and Y. Tateno, Low frequency plasma wave analyzer (LFA) onboard the PLANET-B spacecraft, Earth Planets Space, 50(3), 223–228, 1998.

    Article  Google Scholar 

  • Murata, T., H. Matsumoto, H. Kojima, and T. Iyemori, Correlations of AKR index with Kp and Dst indices, Proc. of the NIPR Symposium on Upper Atmosphere Physics, 10, 64–68, 1997.

    Google Scholar 

  • Ono, T., A. Kumamoto, Y. Yamaguchi, A. Yamaji, T. Kobayashi, Y. Kasahara, and H. Oya, Instrumentation and observation target of the Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planets Space, 60, this issue, 321–332, 2008.

    Article  Google Scholar 

  • Range Encoder Homepage, http://www.compressconsult.com/rangecoder/, 1999.

  • SELENE Project, http://www.kaguya.jaxa.jp/en/index.htm, 2007.

  • Texas Instruments Inc., SMJ320C31 data sheet, 2006.

    Google Scholar 

  • Trávníček, P., P. Hellinger, D. Schriver, and S. D. Bale, Structure of the lunar wake: Two-dimensional global hybrid simulations, Geophys. Res. Lett., 32(L06102), doi:10.1029/2004GL022243, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiya Kasahara.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Kasahara, Y., Goto, Y., Hashimoto, K. et al. Plasma wave observation using waveform capture in the Lunar Radar Sounder on board the SELENE spacecraft. Earth Planet Sp 60, 341–351 (2008). https://doi.org/10.1186/BF03352799

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352799

Key words

  • The SELENE project
  • waveform capture (WFC)
  • software receiver
  • lunar wake
  • plasma wave
  • radio emission