Skip to main content

Volume 60 Supplement 4

Special Issue: Lunar Science with the SELENE “Kaguya” Mission-Prelaunch Studies-

The absorption-peak map of Mare Serenitatis obtained by a hyper-spectral telescope

Abstract

The Mg-number [Mg#=atomic Mg/(Mg+Fe)] serves as an important petrologic discriminator when analyzing and understanding lunar rocks. Variations in the Mg# shift the wavelength of the absorption spectra of ferrous iron, which peak at around 1000 nm. Based on the image cubes of the Moon obtained by the Advanced Lunar Imaging Spectrometer (ALIS), we detected the shift in the absorption spectra of ferrous iron and built up an absorption-peak map of Mare Serenitatis. The wavelength of the absorption peak shows an 11-nm shift in Mare Serenitatis. Since the degree of space weathering can be considered to be almost the same as that within the same lava unit and Ca content cannot change without changing Mg# during magma differentiation, these shifts of the peak absorption spectra suggest that there is Mg# variation in at least the same lava unit.

References

  • Basaltic Volcanism Study Project (BVSP), Basaltic Volcanism on the terrestrial planets, 1286 pp, Pergamon Press Inc., New York, USA, 1981.

    Google Scholar 

  • Blinder, A., Lunar Prospector: Overview, Science, 281, 1475–1476, 1998.

    Article  Google Scholar 

  • Boyce, M. J., Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs, Proc. Lunar Planet. Sci. Conf., 7, 2717–2728, 1976.

    Google Scholar 

  • Carr, M. H., Geologic map of the Mare Serenitatis region of the moon, Geological survey, Map I-489, 1966.

    Google Scholar 

  • Hazen, R. M., P. M. Bell, and H. K. Mao, Effects of compositional variation on absorption spectra of lunar pyroxenes, Proc. Lunar Planet. Sci. Conf., 9, 2914–2934, 1978.

    Google Scholar 

  • Howard, K. A., M. H. Carr, and W. R. Muehlberger, Basalt stratigraphy of southern Mare Serenitatis, Apollo 17 preliminary science report, Washington D.C., U.S. Government Printing Office, NASA SP-330, 29–1–29–12, 1973.

    Google Scholar 

  • Kodama, S. and Y. Yamaguchi, Lunar mare volcanism in the eastern nearside region derived from Clementine UV/VIS data, Meteor. Planet. Sci., 38, 1461–1484, 2003.

    Article  Google Scholar 

  • Lawrence, D. J., W. C. Feldman, R. C. Elphic, R. C. Little, T. H. Prettyman, S. Maurice, P. G. Lucey, and A. B. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers, J. Geophys. Res., 107(E12), 5130, doi:10.1029/2001JE001530, 2002.

    Article  Google Scholar 

  • Lucey, P. G., G. J. Taylor, and E. Maralet, Abundance and distribution of iron on the Moon, Science, 268, 1150–1153, 1995.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, and B. R. Hawke, Mapping FeO and TiO2 content of the lunar surface with multi-spectral imagery, J. Geophys. Res., 103, 3679–3699, 1998.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, and B. L. Jolliff, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultravioletvisible images, J. Geophys. Res., 105, 20297–20305, 2000.

    Article  Google Scholar 

  • Nozette, S., P. Rustan, L. P. Pleasance, D. M. Horan, P. Regeon, E. M. Shoemaker, P. D. Spudis, C. H. Acton, D. N. Baker, J. E. Blamont, B. J. Buratti, M. P. Corson, M. E. Davies, T. C. Duxbury, E. M. Eliason, B. M. Jakosky, and J. F. Kordas, The Clementine mission to the Moon: Scientific overview, Science, 266, 1835–1839, 1994.

    Article  Google Scholar 

  • Pieters, C. M., Mare basalt types on the front side of the Moon: A summary of spectral reflectance data, Lunar Planet. Sci. Conf., 9, 2825–2849, 1978.

    Google Scholar 

  • Pieters, C. M. and A. J. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge, 594pp, The Press Syndicate of the University of Cambridge, Cambridge CB2 2RU, United Kingdom, 1993.

    Google Scholar 

  • Prettyman, T. H., W. C. Feldman, D. J. Lawrence, G. W. McKinney, A. B. Binder, R. C. Elphic, O. M. Gasnault, S. Maurice, and K. R. Moore, Library least squares analysis of Lunar Prospector gamma-ray spectra, 33rd Lunar Planet. Sci. Conf., Abstract #2012, 2002.

    Google Scholar 

  • Saiki, K., R. Nakamura, F. Ichikawa, H. Akiyama, and H. Takeda, Development of a telescope imaging spectrometer for the moon, Lunar Planet. Sci. Conf., XXXV #148, 2004.

  • Sasaki, S., K. Nakamura, Y. Hamabe, E. Kurahashi, and T. Hiroi, Production of iron nanoparticles by laser irradiation in a simulation of lunarlike space weathering, Nature, 410, 555–557, 2001.

    Article  Google Scholar 

  • Scheaffer, G. A. and O. A. Scheaffer, 39Ar-40Ar ages of lunar rocks, Lunar Planet. Sci. Conf., 8, 2253–2300, 1977.

    Google Scholar 

  • Staid, M. I. and C. M. Pieters, Mineralogy of the last lunar basalts: Results from Clementine, J. Geophys. Res, 106(E11), 27,887–27,900, 2001.

    Article  Google Scholar 

  • Stolper, E., Experimental petrology of eucritic meteorites, Geochem. Cosmochim., 41, 587–611, 1977.

    Article  Google Scholar 

  • Tera, F., D. A. Papanastassiou, and G. J. Wasseburg, Isotopic evidence for a terminal lunar cataclysm, Earth Planet. Sci. Lett., 22, 1–21, 1974.

    Article  Google Scholar 

  • Wilhelms, D. E. and F. M. McCauley, Geologic map of the nearside of the Moon, U. S. Geological Survey, Map I-703, Washington D.C., 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Okuno.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Okuno, H., Yamanoi, Y. & Saiki, K. The absorption-peak map of Mare Serenitatis obtained by a hyper-spectral telescope. Earth Planet Sp 60, 425–431 (2008). https://doi.org/10.1186/BF03352807

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352807

Key words