Skip to main content

Volume 60 Supplement 4

Special Issue: Lunar Science with the SELENE “Kaguya” Mission-Prelaunch Studies-

A new model of lunar crust: asymmetry in crustal composition and evolution

Abstract

Earlier models of lunar crustal formation as a simple flotation of ferroan anorthosites (FAN) do not account for the diverse crustal composition revealed by feldspathic lunar meteorites and granulites in the Apollo samples. Based on the integrated results of recent studies of lunar meteorites and global chemical and mineralogical maps, we propose a novel asymmetric crust model with a ferroan, noritic, nearside crust and a magnesian, troctolitic farside crust. Asymmetric crystallization of a primordial magma ocean can be one possibility to produce a crust with an asymmetric composition. A post-magma-ocean origin for a portion of the lunar crust is also possible and would account for the positive eNd value for FAN and phase equilibria. The formation of giant basins, such as the South Pole-Aitken (SPA) basin may have significant effects on resurfacing of the early lunar crust. Thus, the observed surface composition of the feldspathic highland terrane (FHT) represents the combined results of magma ocean crystallization, post-magma-ocean magmatism and resurfacing by basin formation. The Mg/(Mg+Fe) ratios, rock types, and mineral compositions of the FHT and the South Pole-Aitken basin Terrane (SPAT) obtained from the KAGUYA mission, coupled with further mineralogical and isotopic studies of lunar meteorites, will facilitate an assessment of the feasibility of the proposed crust model and improve understanding of lunar crustal genesis and evolution.

References

  • Arai, T., H. Takeda, A. Yamaguchi, and M. Ohtake, Lithology of lunar farside crust, Meteor. Planet. Sci., 42, A14, 2007.

    Google Scholar 

  • Binder, A. B., On fission and the devolatilization of a Moon of fission origin, Earth Planet. Sci. Lett., 41, 381–385, 1978.

    Article  Google Scholar 

  • Binder, A. B., The Moon: Its figure and orbital evolution, Geophys. Res. Lett., 9, 33–36, 1982.

    Article  Google Scholar 

  • Borg, L., M. Norman, L. Nyquist, D. Bogard, G. Snyder, L. Taylor, and M. Lindstrom, Isotopic studies of ferroan anorthosite 62236: A young lunar crustal rock from a light rare-earth-element-depleted source, Geochim. Cosmochim. Acta, 63, 2679–2691, 1999.

    Article  Google Scholar 

  • Bussey, D. B. J. and P. D. Spudis, Compositional studies of the Orientale, Humorum, Nectaris, and Crisium lunar basins, J. Geophys. Res., 105(E2), 4235–4243, 2000.

    Article  Google Scholar 

  • Canup, R. M., Simulation of a late lunar-forming impact, Icarus, 168, 433–456, 2004.

    Article  Google Scholar 

  • Carlson, R. W. and G. W. Lugmair, The age of ferroan anorthosite 60025: oldest crust on a young Moon?, Earth Planet. Sci. Lett., 90, 119–130, 1988.

    Article  Google Scholar 

  • Dowty, E., K. Keil, and M. Printz, Igneous rocks from Apollo 16 rake samples, Lunar Sci., V, 174–176 (abstract), 1974.

    Google Scholar 

  • Garrick-Bethell, I., J. Wisdom, and M. T. Zuber, Evidence for a past higheccentricity lunar orbit, Science, 313, 652–655, 2006.

    Article  Google Scholar 

  • Gillis, J. J., B. L. Jolliff, and R. L. Korotev, Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from Lunar Prospector and Clementine, Geochim. Cosmochim. Acta, 63, 3791–3805, 2004.

    Article  Google Scholar 

  • Haskin, L. A., The Imbrium impact event and the thorium distribution at the lunar highlands surface, J. Geophys. Res., 103, 1679–1689, 1998.

    Article  Google Scholar 

  • Haskin, L. A., M. M. Lindstrom, and P. A. Salpas, Some observations on compositional characteristics of lunar anorthosites, Lunar Planet. Sci., XII, 304–305 (abstract), 1981.

    Google Scholar 

  • Hawke, B. R., C. A. Peterson, D. T. Blewett, D. B. J. Bussey, P. G. Lucey, G. J. Taylor, and P. D. Spudis, Distribution and mode of occurrence of lunar anorthosite, J. Geophys. Res., 108(E6), 5050, 2003.

    Article  Google Scholar 

  • Hess, P. C., In Origins of igneous rocks, Harvard University Press, Cambridge, 1989.

    Google Scholar 

  • Hess, P. C. and E. M. Parmentier, A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism, Earth Planet. Sci. Lett., 134, 501–514, 1995.

    Article  Google Scholar 

  • Hess, P. C. and E. M. Parmentier, Thermal evolution of a thicker KREEP liquid layer, J. Geophys. Res., 106(E1), 28,023–28,032, 2001.

    Article  Google Scholar 

  • Jacobsen, S. B. and G. J. Wasserburg, SM-Nd isotopic evolution of chondrites and achondrites, II, Earth Planet. Sci. Lett., 67, 137–150, 1984.

    Article  Google Scholar 

  • Jolliff, B. L., J. J. Gillis, L. Haskin, R. L. Korotev, and M. A. Wieczorek, Major lunar crustal terranes: Surface expressions and crustal-mantle origins, J. Geophys. Res., 105, 4197–4216, 2000.

    Article  Google Scholar 

  • Korotev, R. L., Some things we can infer about the moon from the composition of the Apollo 16 regolith, Meteor. Planet. Sci., 32, 447–478, 1997.

    Article  Google Scholar 

  • Korotev, R. L., The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact-melt breccias, J. Geophys. Res., 105, 4317–4345, 2000.

    Article  Google Scholar 

  • Korotev, R. L. and R. A. Zeigler, Keeping up with the lunar meteorites, Lunar Planet. Sci., 38, Abstract 1340, 2007.

    Google Scholar 

  • Korotev, R. L., B. L. Jolliff, R. A. Zeigler, J. J. Gillis, and L. A. Haskin, Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust, Geochim. Cosmochim. Acta, 67, 4895–4923, 2003.

    Article  Google Scholar 

  • Korotev, R. L., R. A. Zeigler, and B. L. Jolliff, Feldspathic lunar meteorites Pecora Escarpment 02007 and Dhofar 489: Contamination of the surface of the lunar highlands by post-basin impacts, Geochim. Cosmochim. Acta, 70, 5935–5956, 2006.

    Article  Google Scholar 

  • Lawrence, D. J., R. C. Elphic, W. C. Feldman, T. H. Prettyman, O. Gasnault, and S. Maurice, Small-area thorium features on the lunar surface, J. Geophys. Res., 108(E9), 5102, 2003.

    Article  Google Scholar 

  • Lindstrom, M. M. and D. J. Lindstrom, Lunar granulites and their precursor anorthositic norites of the early lunar crust, Proc. Lunar Planet. Sci. Conf., 12B, 305–322, 1986.

    Google Scholar 

  • Longhi, J., A new view of lunar ferroan anorthosites: Postmagma ocean petrogenesis, J. Geophys. Res., 108(E8), 5083, doi:10.1029/ 2002JE001941, 2003.

    Article  Google Scholar 

  • Longhi, J. and J. D. Ashwal, Two-sage model for lunar and terrestrial anorthosites: petrogenesis without a magma ocean, Proc. 15th Lunar Sci. Conf., C571–C584, 1985.

    Google Scholar 

  • Loper, D. E. and C. L. Werner, On lunar asymmetries 1. Tilted convection and crustal asymmetry, J. Geophys. Res., 107(E6), 5046, 10.1029/ 2000JE001441, 2002.

    Article  Google Scholar 

  • Lucey, P. G., Mineral maps of the Moon, Geophys. Res. Lett., 31, L08701, 2004.

    Article  Google Scholar 

  • Lucey, P. G. and J. Cahill, Magnesian rock types in the lunar highlands: Remote sensing using data from Lunar Prospector and Clementine, Lunar Planet. Sci., 37, Abstract 1660, 2006.

    Google Scholar 

  • Lucey, P. G., G. J. Taylor, and E. Malaret, Abundance and distribution of iron on the Moon, Science, 268, 1150–1153, 1995.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, and B. R. Hawke, Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery, J. Geophys. Res., 103, 3679–3699, 1998.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, G. J. Taylor, and B. R. Hawke, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images, J. Geophys. Res., 105, 20377–20386, 2000.

    Article  Google Scholar 

  • Lucey, P., R. L. Korotev, J. J. Gillis, L. A. Taylor, D. Lawrence, B. A. Campbell, R. Elphic, B. Feldman, L. L. Hood, D. Hunten, M. Mendillo, S. Noble, J. J. Papike, R. C. Reedy, S. Lawson, T. Prettyman, O. Gasnault, and S. Maurice, Understanding the lunar surface and space-Moon interactions, in New View of the Moon, Reviews in Mineralogy & Geochemistry, Vol. 60, edited by B. L. Jolliff, M. A. Wieczorek, C. K. Shearer, and C. R. Neal, 83–219, Mineralogical Society of America, 2006.

    Google Scholar 

  • Ma, M.-S., R. A. Schmitt, G. J. Taylor, R. D. Warner, and K. Keil, Chemical and petrographic study of spinel troctolite in 67435: Implication for the origin of Mg-rich plutonic rocks, Lunar Planet. Sci., 12, 640–642 (abstract), 1981.

    Google Scholar 

  • Morota, T. and M. Furumoto, Asymmetrical distribution of rayed craters of the Moon, Earth Planet. Sci. Lett., 206, 315–323, 2003.

    Article  Google Scholar 

  • Neumann, G. A., M. T. Zuber, D. E. Smith, and F. G. Limoine, The lunar crust: Global structure and signature of major basins, J. Geophys. Res., 101, 16,841–16,843, 1996.

    Article  Google Scholar 

  • Norman, M. D., L. E. Borg, L. E. Nyquist, and D. D. Bogard, Crystallization age and impact resetting of ancient lunar crust from the Descartes terrane, in The Moon Beyond 2002: Next steps in Lunar Science and Exploration, abstract 3028, edited by D. J. Lawrence and M. B. Duke, The Lunar and Planetary Institute, Houston, 2002.

    Google Scholar 

  • Nyquist, R. L., Lunar Rb-Sr chronology, Phys. Chem. Earth, 10, 103–142, 1977.

    Google Scholar 

  • Nyquist, R. L., D. Bogard, A. Yamaguchi, C.-Y. Shih, Y. Karouji, M. Ebihara, Y. Reese, D. Garrison, G. McKay, and H. Takeda, Feldspathic clasts in Yamato-86032: Remnants of the lunar crust with implications for its formation and impact history, Geochim. Cosmochim. Acta, 70, 5990–6015, 2006.

    Article  Google Scholar 

  • Papike, J. J., G. Ryder, and C. K. Shearer, Lunar samples, in Planetary Materials, Reviews in Mineralogy & Geochemistry, Vol. 36, edited by J. J. Papike, 5-1-5-234, Mineralogical Society of America, 1998.

    Google Scholar 

  • Parmentier, E. M., S. Zhong, and M. T. Zuber, Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP?, Earth Planet. Sci. Lett., 201, 473–480, 2002.

    Article  Google Scholar 

  • Pieters, C. M., J. W. Head III, L. Gaddis, and M. Duke, Rock types of South Pole-Aitkens basin and extent of basaltic volcanism, J. Geophys. Res., 106, 28,001–28,022, 2001.

    Article  Google Scholar 

  • Ryder, G., Lunar ferroan anorthosites and mare basalt sources: The mixed connection, Geophys. Res. Lett., 18, 2065–2068, 1991.

    Article  Google Scholar 

  • Ryder, G., Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth, J. Geophys. Res., 107, 1–14, 2002.

    Google Scholar 

  • Schultz, P. H., A possible link between Procellarum and the South-Pole- Aitken basin, Lunar Planet. Sci., XXXVIII, Abstract 1839, 2007.

    Google Scholar 

  • Shirley, D. N. A., partially molten magma ocean, Proc. 13th Lunar Planet. Sci. Conf., A519–A527, 1983.

    Google Scholar 

  • Snyder, G. A., L. A. Taylor, and C. R. Neil, A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere, Geochim. Cosmochim. Acta, 56, 3809–3823, 1992.

    Article  Google Scholar 

  • Spudis, P. D., R. A. Reese, and J. J. Gillis, Ancient multiring basins on the Moon revealed by Clementine laser altimetry, Science, 266, 1848–1851, 1994.

    Article  Google Scholar 

  • Takeda, H., A. Yamaguchi, D. D. Bogard, Y. Karouji, M. Ebihara, M. Ohtake, K. Saiki, and T. Arai, Magnesian anorthosites and a deep crustal rock from the farside crust of the moon, Earth Planet. Sci. Lett., 247, 171–184, 2006.

    Article  Google Scholar 

  • Taylor, G. J., P. Warren, G. Ryder, J. Delano, C. Pieters, and G. Lofgren, Lunar Rocks, in Lunar Sourcebook: A Users Guide to the Moon, edited by Heiken, G. H., D. T. Vaniman, and B. M. French, 183–284, Cambridge University Press, 1991.

    Google Scholar 

  • Taylor, S. R., In Planetary Science: A Lunar Perspective, p. 481, Lunar and Planet. Inst., Houston, Tex., 1982.

    Google Scholar 

  • Tera, F., D. A. Papanastassiou, and G. J. Wasserburg, Isotopic evidence for a terminal cataclysm, Earth Planet. Sci. Lett., 22, 1–22, 1974.

    Article  Google Scholar 

  • Tompkins, S. and C. M. Pieters, Mineralogy of the lunar crust: Results from Clementine, Meteor. Planet. Sci., 34, 25–41, 1999.

    Article  Google Scholar 

  • Walker, D., Lunar and terrestrial crustal formation, Proc. 14th Lunar Planet. Sci. Conf., B17–B25, 1983.

    Google Scholar 

  • Warner, J. L., W. C. Phinney, C. E. Bickel, and C. H. Simonds, Feldspathic granulitic impactites and pre-final bombardment lunar evolution, Proc. 8th Lunar Sci. Conf., 2051–2066, 1977.

    Google Scholar 

  • Warren, P. H., The magma ocean concept and lunar evolution, Ann. Rev. Earth Planet. Sci., 13, 201–240, 1985.

    Article  Google Scholar 

  • Warren, P. H., Lunar anorthosites and the magma-ocean plagioclaseflotation hypothesis: Importance of FeO enrichment in the parent magma, Am. Miner., 75, 46–58, 1990.

    Google Scholar 

  • Warren, P. H., A concise compilation of petrologic information on possibly pristine nonmare Moon rocks, Am. Miner., 78, 360–376, 1993.

    Google Scholar 

  • Warren, P. H., The Moon, in Meteorites, Comets, and Planets, editied by A. M. Davis, 559–599, Treatise on Geochemistry, Vol. 1, edited by H. D. Holland and K. K. Turekian, Elsevier-Pergamon, Oxford, 2004.

    Google Scholar 

  • Warren, P. H. and J. T. Wasson, Pristine nonmare rocks and the nature of the lunar crust, Proc. 8th Lunar Sci. Conf., 2215–2235, 1977.

    Google Scholar 

  • Warren, P. H. and J. T. Wasson, Early lunar petrogenesis, oceanic and extraoceanic, in Proc. of the conference on the Lunar Highland Crust, 81–99, edited by R. B. Merill and J. J. Papike, Pergamon, New York, 1980.

    Google Scholar 

  • Wasson, J. T. and P. H. Warren, Contribution of the mantle to the lunar asymmetry, Icarus, 44, 752–771, 1980.

    Article  Google Scholar 

  • Wetherill, G. W., Nature and origin of basin-forming projectiles, in Multiring Basins, edited by P. Schultz and R. B. Merill, 1–18, Pergamon, New York, 1981.

    Google Scholar 

  • Wieczorek, M. A. and R. J. Phillips, The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution, J. Geophys. Res., 105, 20417–20420, 2000.

    Article  Google Scholar 

  • Wieczorek, M. A. and M. T. Zuber, The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling, Geophys. Res. Lett., 28, 4023–4026, 2001.

    Article  Google Scholar 

  • Wieczorek, M. A., B. L. Jolliff, A. Khan, M. E. Pritchard, B. P. Weiss, J. G. Williams, L. L. Hood, K. Righter, C. R. Neal, C. K. Shearer, I. S. McCallum, S. Tompkins, B. R. Hawke, C. Peterson, J. J. Gillis, and B. Bussey, The constitution and structure of the lunar interior, in New View of the Moon, Reviews in Mineralogy & Geochemistry, Vol. 60, edited by B. L. Jolliff, M. A. Wieczorek, C. K. Shearer, and C. R. Neal, 221–364, Mineralogical Society of America, 2006.

    Google Scholar 

  • Wood, J. A., Lunar petrogenesis in a well-stirred magma ocean, Proc. 6th Lunar Sci. Conf., 2107–2130, 1975.

    Google Scholar 

  • Zhong, S., E. M. Parmentier, and M. T. Zuber, A dynamic origin for the global asymmetry of lunar mare basalts, Earth Planet. Sci. Lett., 177, 131–140, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Arai.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Arai, T., Takeda, H., Yamaguchi, A. et al. A new model of lunar crust: asymmetry in crustal composition and evolution. Earth Planet Sp 60, 433–444 (2008). https://doi.org/10.1186/BF03352808

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352808

Key words

  • Moon
  • crustal evolution
  • asymmetry
  • lunar meteorites
  • KAGUYA