Skip to main content

Volume 60 Supplement 5

Special Issue: Geohazards and the Role of Space-Born Observations

Deformation of the Augustine Volcano, Alaska, 1992–2005, measured by ERS and ENVISAT SAR interferometry

Abstract

The Augustine Volcano is a conical-shaped, active stratovolcano located on an island of the same name in Cook Inlet, about 290 km southwest of Anchorage, Alaska. Augustine has experienced seven significant explosive eruptions—in 1812, 1883, 1908, 1935, 1963, 1976, 1986, and in January 2006. To measure the ground surface deformation of the Augustine Volcano before the 2006 eruption, we applied satellite radar interferometry using Synthetic Aperture Radar (SAR) images from three descending and three ascending satellite tracks acquired by European Remote Sensing Satellite (ERS) 1 and 2 and the Environment Satellite (ENVISAT). Multiple interferograms were stacked to reduce artifacts caused by atmospheric conditions, and we used a singular value decomposition method to retrieve the temporal deformation history from several points on the island. Interferograms during 1992 and 2005 show a subsidence of about 1–3 cm/year, caused by the contraction of pyroclastic flow deposits from the 1986 eruption. Subsidence has decreased exponentially with time. Multiple interferograms between 1992 and 2005 show no significant inflation around the volcano before the 2006 eruption. The lack of a pre-eruption deformation signal suggests that the deformation signal from 1992 to August 2005 must have been very small and may have been obscured by atmospheric delay artifacts.

References

  • Begét, J. E. and Z. Kowalik, Confirmation and Calibration of Computer Modeling of Tsunamis Produced by Augustine Volcano, Alaska, Sci. Tsunami Hazards, 24, 257, 2006.

    Google Scholar 

  • Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti, A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms, IEEE Trans. Geosci. Remote Sensing, 40, 2,375–2,383, 2002.

    Article  Google Scholar 

  • Briole, P., D. Massonnet, and C. Delacourt, Post-eruptive deformation associated with the 1986-87 and 1989 laval flows of Etna detected by radar interferometry, Geophys. Res. Lett., 24, 37–40, 1997.

    Article  Google Scholar 

  • Dvorak, J. and D. Dzurisin, Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents, Rev. Geophys., 35, 343–384, 1997.

    Article  Google Scholar 

  • Dzurisin, D., A comprehensive approach to monitoring volcano deformation as a window on eruption cycle, Rev. Geophys., 41, doi:10. 1029/2001RG000107, 2003.

  • Lu, Z., InSAR Imaging of Volcanic Deformation Over Cloud-prone Areas-Aleutian Islands, Photogrammetric Eng. Remote Sensing, 73, 245–257, 2007.

    Article  Google Scholar 

  • Lu, Z., T. Masterlark, and D. Dzurisin, Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation, J. Geophys. Res., 110, doi:10.1029/2004JB00348, 2005.

  • Lu, Z.,Jr., C. Wicks, D. Dzurisin, J. Power, W. Thatcher, and T. Masterlark, Interferometric Synthetic Aperture Radar Studies of Alaska Volcanoes, Earth Observation Mag., 12, 2003.

  • Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari, Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, 2004.

  • Massonnet, D. and K. Feigl, Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys., 36,441–36,500, 1998.

    Google Scholar 

  • Masterlark, T., Z. Lu, and R. Rykhus, Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm, J. Volcanol. Geoth. Res., 150, 186–201, 2006.

    Article  Google Scholar 

  • Menke, W., Geophysical data analysis: Descrete inverse theory, International Geophysics Series, Academic Press, 45, 289, 1989.

    Google Scholar 

  • Miller, T. M., R. G. McGimsey, D. H. Richter, J. R. Riehle, C. J. Nye, M. E. Yount, and J. A. Dumoulin, Catalog of the historically active volcanoes of Alaska, USGS Open-File Report, 98–582, 1998.

    Google Scholar 

  • Moran, S. C, O. Kwoun, T. Masterlark, and Z. Lu, On the absence of InSAR-detected volcano deformation spanning the 1995–1996 and 1999 eruptions of Shishaldin Volcano, Alaska, J. Volcanol. Geoth. Res., 150, 119–131, 2006.

    Article  Google Scholar 

  • Pritchard, M. E. and M. Simons, A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature, 418, 167–171, 2002.

    Article  Google Scholar 

  • Rosen, P., S. Hensley, I. R. Joughin, F K. Li, S. N. Madsen, E. Rodriguez, and R. M. Goldstein, Synthetic aperture radar interferometry, Proceedings IEEE, 88,333–88,380, 2000.

    Google Scholar 

  • Schmidt, D. A. and R. Bürgmann, Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, J. Geophys. Res., 108, doi:10.1029/2002JB002267, 2003.

  • Stevens, N. F, G. Wadge, C. A. Williams, J. G. Morley, J.-P. Muller, J. B. Murray, and M. Upton, J. Geophys. Res., 106, 11,293–11,313, 2001.

    Article  Google Scholar 

  • Turcotte, D. L. and G. J. Schubert, Geodynamics: Applications of continuum physics to geological problems, John Wiley & Sons, New York, 1982.

    Google Scholar 

  • Usai, S., A Least Squares Database Approach for SAR Interferometric Data, IEEE Transactions on Geoscience and Remote Sensing, 41, 753–760, 2003.

    Article  Google Scholar 

  • Waythomas, C. F and R. B. Waitt, Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska, U.S. Geolog. Surv, Open File Re., 98–0106, 39, 1998.

    Google Scholar 

  • Wright, T. J., B. E. Parsons, and Z. Lu, Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, L01607, doi:10.1029/2003GL018827, 2004.

  • Zebker, H. A., F. Amelung, and S. Jonsson, Remote Sensing of Volcano Surface and Internal Processes Using Radar Interferometry, in Remote Sensing of Active Volcanism, Geophysical Monograph, Am. Geophys. Union, 116, 179–205, 2000.

    Article  Google Scholar 

  • Zebker, H. A., P. A. Rosen, and S. Hensley, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res., 102, 7547–7563, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Wook Lee.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Lee, CW., Lu, Z., Kwoun, OI. et al. Deformation of the Augustine Volcano, Alaska, 1992–2005, measured by ERS and ENVISAT SAR interferometry. Earth Planet Sp 60, 447–452 (2008). https://doi.org/10.1186/BF03352811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352811

Key words