Skip to main content

The ESPERIA satellite project for detecting seismo-associated effects in the topside ionosphere. First instrumental tests in space

Abstract

In recent times, ionospheric and magnetospheric perturbations constituted by radiation belt particle precipitations, variations of temperature and density of ionic and electronic components of ionospheric plasma as well as electric and magnetic field fluctuations have been detected on board of the LEO satellites and associated with earthquake preparation and occurrence. Several mechanisms have been suggested as justifying the seismoelectromagnetic phenomena observed in the upper lithosphere and in the topside ionosphere before, during and after an earthquake. Their propagation in these media has also been investigated, but physical knowledge of such processes is below standard. Consequently, coordinated space and ground-based observations based on data gathered simultaneously in space and at the Earth’s surface are needed to investigate seismo-associated phenomena. To this end, the ESPERIA space mission project has been designed for the Italian Space Agency (ASI). To date, a few instruments of its payload have been built and tested in space. This paper reports on the justification, science background, and characteristics of the ESPERIA mission project as well as the description and testing of ESPERIA Instruments (ARINA and LAZIO-EGLE) in space.

References

  1. Areshidze, G., F. Bella, P. F. Biagi, M. Caputo, V. Chkuaseli, G. Della Monica, A. Ermini, P. Manjgaladze, G. Melikadze, V. Sgrigna, L. Slavina, and D. Zilpimiani, Anomalies in geophysical and geochemical parameters revealed in the occasion of the Paravani (M = 5.6) and Spitak (M = 6.9) earthquakes (Caucasus), Tectonophysics, 202, 23–41, 1992.

    Article  Google Scholar 

  2. Aleksandrin, S. Yu., A. M. Galper, L. A. Grishantzeva, S. V. Koldashov, L. V. Maslennikov, A. M. Murashov, P. Picozza, V. Sgrigna, and S. A. Voronov, High-energy charged particle bursts in the near-Earth space as earthquake precursors, Ann. Geophys., 21, 597–602, 2003.

    Article  Google Scholar 

  3. Aleshina, M. E., S. A. Voronov, A. M. Galper, S. V. Koldashov, and L. V. Maslennikov, Correlation between Earthquake Epicenters and Regions of High-Energy Particle Precipitations from the Radiation Belt, Cosmic Res., 30(1), 79–83, 1992.

    Google Scholar 

  4. Bella, F., R. Bella, P. F. Biagi, A. Ermini, and V. Sgrigna, Possible precursory tilts preceding some earthquakes (3.0 ≤M ≤3.8) occurred in Central Italy between February 1981 and June 1983, Earthq. Predict. Res., 4, 147–154, 1986a.

    Google Scholar 

  5. Bella, F, P. F. Biagi, A. Ermini, V. Sgrigna, and P. Manjgaladze, Possible Propagation of Tilt and Strain Anomalies: Velocity and other Characteristics, Earthq. Predict. Res., 4, 195–209, 1986b.

    Google Scholar 

  6. Bella, F., P. F. Biagi, M. Caputo, G. Della Monica, A. Ermini, and V. Sgrigna, Very slow-moving Crustal Strain Disturbances, Tectonophysics, 179, 131–139, 1990.

    Article  Google Scholar 

  7. Bella, F., P. F. Biagi, M. Caputo, G. Della Monica, A. Ermini, and V. Sgrigna, Ground Tilt Anomalies Accompanying the Main Earthquakes Occurred in the Central Apennines (Italy) during the Period 1986–1989, Nuovo Cimento, 16C, 393–406, 1993.

    Article  Google Scholar 

  8. Bella, F., P. F. Biagi, M. Caputo, G. Della Monica, A. Ermini, P. V. Manjgaladze, V. Sgrigna, and D. O. Zilpimiani, Possible Creep-related Tilt Precursors Obtained in the Central Apennines (Italy) and in the Southern Caucasus (Geirgia), Pure Appl. Geophys., 144, 277–299, 1995.

    Article  Google Scholar 

  9. Bella, F., M. Caputo, G. Della Monica, A. Lisi, W. Plastino, R. Scandone, and V. Sgrigna, Crustal Blocks and Seismicity in the Central Apennines of Italy, Nuovo Cimento, 21C, 597–607, 1998.

    Google Scholar 

  10. Bernabé, Y., Streaming potential in heterogeneous network, J. Geophys. Res., 103, 20827–20841, 1998.

    Article  Google Scholar 

  11. Bilham, R. G., Delays in the Onset Times of Near-Surface Strain and Tilt Precursor to Earthquakes, in Earthquake Prediction: An International Review, edited by P. J. Simpson and P. G. Richards, pp. 411–421, Geophysical Union, Washington, D.C. 1981, 1981.

    Google Scholar 

  12. Bilham, R. G. and R. J. Beavan, Strains and tilts on crustal blocks, Tectonophysics, 52, 121–138, 1979.

    Article  Google Scholar 

  13. Bilham, R. G., J. Beavan, K. Evans, and K. Hurst, Crustal deformation metrology at Lamont-Doherty Geological Observatory, Earthq. Predict. Res., 3, 391–411, 1985.

    Google Scholar 

  14. Bilichenko, S. V., F. S. Iljin, E. F. Kim, O. A. Pokhotelov, P. P. Puschaev, G. A. Stanev, A. V. Streltsov, and V. M. Chmyrev, ULF response of the ionosphere for earthquake preparation processes, Dokl. Acad. Nauk, USSR, 311, 1077–1080, 1990.

    Google Scholar 

  15. Bishop, J. R., Piezoelectric effects in quartz-rich rocks, Tectonophysics, 77, 297–321, 1981.

    Article  Google Scholar 

  16. Blanc, E., Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary, Ann. Geophys., 3(6), 673–688, 1985.

    Google Scholar 

  17. Buzzi, A., M. Parrot, and J. A. Sauvaud, Precipitation of particles by intense electromagnetic harmonic waves during magnetic storms, Comunication to the Conference “Symposium International Demeter” (Toulouse, France, 14–16 Giugno 2006).

    Google Scholar 

  18. Buzzi, A., L. Conti, M. Parrot, J. L. Pincon, V. Sgrigna, and Z. Zilpimiani, Statistical study of anomalous fluctuations of whistler data recorded by DEMETER, 2007 IUGG XXIV General Assembly, IAGA-IASPEI-IAVCEI Joint Section “JSS010: Progress in electromagnetic studies on earthquakes and volcanoes—Seismo-electromagnetic studies using space technology”, Abstr. 10032, Perugia, Italy, July 2–13, 2007.

    Google Scholar 

  19. Chmyrev, V. M., N. V. Isaev, O. N. Serebryakova, V. M. Sorokin, and Ya. P. Sobolev, Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region, J. Atm. Solar-Terr. Phys., 59, 967–974, 1997.

    Article  Google Scholar 

  20. Conti, L., A. Buzzi, A. M. Galper, S. V. Koldashov, A. M. Murashov, P. Picozza, R. Scrimaglio, V. Sgrigna, and L. Stagni, Influence of the seismic activity on the inner Van Allen radiation belt, 10th Scientific Assembly of the International Association of Geomagnetism and Aeronomy (IAGA 2005), Toulose, France, July 18–29, 2005, [tiSession Division I, GA101: Monitoring earthquakes and volcanic activity by magnetic, electric and electromagnetic methods; IAGA2005-A-01518, p. 46, 2005.

  21. Conti, L., A. Buzzi, M. Parrot, J. L. Pincon, V. Sgrigna, and Z. Zilpimiani, Possible influence of seismic activity on the propagation of anomalous whistlers recorded in space, 2007 IUGG XXIV General Assembly, IAGA-IASPEI-IAVCEI Joint Section “JSS010: Progress in electromagnetic studies on earthquakes and volcanoes—Seismo-electromagnetic studies using space technology”, Abstr. 10093, Perugia, Italy, July 2–13, 2007.

  22. Dobrovolsky, I. P., N. I. Gershenzon, and M. B. Gokhberg, Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake, Phys. Earth Planet. Inter., 57, 144–156, 1989.

    Article  Google Scholar 

  23. Draganov, A. B., U. S. Inan, and Y. N. Taranenko, ULF magnetic signatures at the Earth surface due to the ground water flow: a possible precursor to earthquakes, Geophys. Res. Lett., 18, 1127–1130, 1991.

    Article  Google Scholar 

  24. Eftaxias, K., P. Kapiris, J. Polygiannakis, A. Peratzakis, J. Kopanas, G. Antonopoulos, and D. Rigas, Experience of short term earthquake precursors with VLF-VHF electromagnetic emissions, Nat. Hazard Earth Syst. Sci., 3, 217–228, 2003.

    Article  Google Scholar 

  25. Fenoglio, M. A., M. J. S. Johnston, and J. D. Byerlee, Magnetic and electric fields associated with changes in high pore pressure in fault zones: application to the Loma Prieta ULF emissions, J. Geophys. Res., 100, 12951–12958, 1995.

    Article  Google Scholar 

  26. Fraser-Smith, A. C., P. R. McGill, R. A. Helliwell, and O. G. Villard,Jr., Ultra-low frequency magnetic field measurements in southern California during the Northridge earthquake of 17 January 1994, Geophys. Res. Lett., 21, 2195–2198, 1994.

    Article  Google Scholar 

  27. Freund, F. T., Charge generation and propagation in igneous rocks, J. Geodyn., 33, 543–570, 2002.

    Article  Google Scholar 

  28. Freund, F. T., On the electrical conductivity structure of the stable continental crust, J. Geodyn., 35, 353–388, 2003.

    Article  Google Scholar 

  29. Freund, F. T., A. Takeushi, and B. W. S. Lau, Electric currents streamimg out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth, 31, 389–396, 2006.

    Article  Google Scholar 

  30. Fujinawa, Y., K. Takahashi, and T. Matsumoto, Modeling confined pressure changes inducing anomalous electromagnetic fields related with earthquakes, J. Appl. Geophys., 49, 101–110, 2002.

    Article  Google Scholar 

  31. Fujiwara, H., M. Kamogawa, M. Ikeda, Y. J. Liu, H. Sakata, Y. I. Chen, H. Ofuruton, S. Muramatsu, Y. J. Chuo, and Y. H. Ohtsuki, Atmospheric anomalies observed during earthquake occurrences, Geophys. Res. Lett., 31, L17110, doi: 10.1029/2004GL019865, 2004.

  32. Gabrielov, A. M., T. A. Levshina, and I. M. Rotwain, Block model of earthquake sequence, Phys. Earth Planet. Inter., 61, 18–22, 1990.

    Article  Google Scholar 

  33. Galli, I., Raccolta e classificazione di fenomeni luminosi osservati nei terremoti, Boll. Soc. Ital. Sismologia, n.14, 1910.

    Google Scholar 

  34. Galper, A. M., V. B. Dimitrenko, N. V. Nikitina, V. M. Grachev, and S. E. Ulin, Interrelation between High-Energy Charged Particle Fluxes in the Radiation Belt and Seismicity of the Earth, Cosmic Res., 27, 789, 1989.

    Google Scholar 

  35. Galper, A. M., S. V. Koldashov, and S. A. Voronov, High energy particle flux variations as earthquake predictors, Adv. Space Res., 15, 131–134, 1995.

    Article  Google Scholar 

  36. Galperin, Yu. I., V. A. Gladyshev, N. V. Jordjio, and V. I. Larkina, Precipitation of High-Energy Captured Particles in the Magnetosphere Above the Epicenter of an Incipient Earthquake, Cosmic Res., 30, 89–106, 1992.

    Google Scholar 

  37. Geller, R. J., Debate on VAN, Geophys. Res. Lett., 23(whole issue 11), 1996.

    Google Scholar 

  38. Gershenzon, N. and G. Bambakidis, Modeling of seismo-electromagnetic phenomena, Russ. J. Earth Sci., 3, 247–275, 2001.

    Article  Google Scholar 

  39. Ginzburg, E. A., A. B. Malishev, I. P. Proshkina, and V. P. Pustovetov, Correlation of strong earthquakes with radiation belt particle flux variations, Geomagn. Aeron. (Engl. Transl.), 34, 315–320, 1994.

    Google Scholar 

  40. Gokhberg, M. B., V. A. Morgounov, and E. L. Aronov, On the high frequency electromagnetic radiation during seismic activity, Dokladi Acad. Sci. USSR, 248, 1077–1081, 1979.

    Google Scholar 

  41. Grimalsky, V. V., I. A. Kremenetsky, and Yu. G. Rapoport, Excitation of EMW in the Lithosphere and Propagation into Magnetosphere, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa, pp. 777–787, TERRAPUB, Tokyo, 1999.

    Google Scholar 

  42. Gufeld, I., G. Gusev, and O. Pokhotelov, Is the prediction of earthquake dates possible by the VLF radiowave monitoring method?, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 381–389, TERRAPUB, Tokyo, 1994.

    Google Scholar 

  43. Guo, Z., B. Liu, and Y. Wang, Mechanism of electromagnetic emissions associated with microscopic and macroscopic cracking in rocks, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa, pp. 523–529, TERRAPUB, Tokyo, 1994.

    Google Scholar 

  44. Hayakawa, M. and H. Sato, Ionospheric perturbations associated with earthquakes, as detected by subionospheric VLF propagation, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 391–397, TERRAPUB, Tokyo, 1994.

    Google Scholar 

  45. Hayakawa, M., Yu. Kopytenko, N. Smirnova, V. Troyan, and Th. Peterson, Monitoring ULF magnetic disturbances and schemes for recognizing earthquake precursors, Phys. Chem. Earth (A), 25, 263–269, 2000.

    Article  Google Scholar 

  46. Hayakawa, M., O. A. Molchanov, and A. P. Nikolaenko, Model variations in atmospheric radio noise caused by preseismic modifications of tropo-spheric conductivity profile, in Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, edited by M. Hayakawa and O. A. Molchanov, pp. 349–352, TERRAPUB, Tokyo, 2002.

    Google Scholar 

  47. Ida, Y., Slow moving deformation pulses along tectonic faults, Phys. Earth Planet. Inter., 9, 328–337, 1974.

    Article  Google Scholar 

  48. Ismaguilov, V. S., Yu. A. Kopytenko, K. Hattori, P. M. Voronov, O. A. Molchanov, and M. Hayakawa, ULF magnetic emissions connected with under sea bottom earthquakes, Nat. Hazard Earth Syst. Sci., 1, 23–31, 2001.

    Article  Google Scholar 

  49. Johnston, M. J. S., Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys., 18, 441–475, 1997.

    Article  Google Scholar 

  50. Johnston, M. J. S. and R. J. Mueller, Seismomagnetic observations during the 8 July 1986 magnitude 5.9 North Palm Springs earthquake, Science, 237, 1201–1203, 1987.

    Article  Google Scholar 

  51. Keilis Borok, V. I., Intermediate term earthquake prediction, Proc. Natl. Acad. Sci. USA., 93, 3748–3755, 1996.

    Article  Google Scholar 

  52. Keilis Borok, V. I. and A. Soloviev, Non Linear Dynamics of the Lithosphere and Earthquake Prediction, Springer, Berlin, 2003.

    Google Scholar 

  53. Kopytenko, Yu. A., T. G. Matiashvili, P. M. Voronov, E. A. Kopytenko, and O. A. Molchanov, Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories, Phys. Earth Planet. Inter., 77, 85–95, 1993.

    Article  Google Scholar 

  54. Krechetov, V. V., Cerenkov radiation of protons in the magnetosphere as a source of VLF waves preceding an earthquake, Geomag. and Aeron. (Engl Transl.), 35, 688–691, 1996.

    Google Scholar 

  55. Larkina, V. I., V. V. Migulin, O. A. Molchanov, I. P. Kharkov, A. S. Inchin, and V. V. Schvetsova, Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones, Phys. Earth Planet. Inter., 57, 100–109, 1989.

    Article  Google Scholar 

  56. Lee, C. C., J. Y. Liu, and C. J. Pan, The height of sporadic-E layer simultaneously observed by the VHF radar and ionosondes in Chung-Li, Geophys. Res. Lett., 27, 641–644, 2000.

    Article  Google Scholar 

  57. Liu, J. Y., Y. I. Chen, Y. J. Chuo, and C. S. Chen, A statistical investigation of pre-earthquake ionospheric anomaly, J. Geophys. Res., 111, A05304, doi:10.1029/2005JA011333, 2006.

    Google Scholar 

  58. Long, M., A. Lorenz, G. Rodgers, E. Tapio, G. Tran, K. Jackson, R. Twiggs, and T. Bleier, A Cubesat derived design for a unique academic research mission in earthquake signature detection, in Proceedings of the 16th Annual/USU Conference on Small Satellites, Logan, Utah, August 2002, SSC02-IX-6, pp. 1–17, 2002.

    Google Scholar 

  59. McHugh, S. and M. J. S. Johnston, A Review of Observations and Dislocation Modeling of some Creep-Related Tilt Perturbations from Central California, in Terrestrial and Space Techniques in earthquake Prediction, edited by A. Vogel, (Vieweg and Sohn, Braunschweig, Wiesbaden 1979), pp. 181–201, 1979.

    Google Scholar 

  60. Merzer, M. and S. L. Klemperer, Modeling low-frequency magnetic-field precursors to the Loma Prieta earthquake with a precursory increase in fault-zone conductivity, Pure Appl. Geophys., 150, 217–248, 1997.

    Article  Google Scholar 

  61. Molchanov, O. A., O. A. Mazhaeva, A. N. Golyavin, and M. Hayakawa, Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes, Ann. Geophys., 11, 431–440, 1993.

    Google Scholar 

  62. Molchanov, O. A., M. Hayakawa, and V. A. Rafalsky, Penetration Characteristics of Electromagnetic Emissions from an Underground Seismic.

  63. Source into the Atmosphere, Ionosphere and Magnetosphere, J. Geo-phys.Res., 100, 1691–1712, 1995.

    Article  Google Scholar 

  64. Molchanov, O. A. and M. Hayakawa, On the Generation Mechanism of ULF seismogenic Electromagnetic Emissions, Phys. Earth Planet. Inter., 105, 201–210, 1998.

    Article  Google Scholar 

  65. Morgounov, V. A., T. Ondoh, and S. Nagai, Anomalous variation of VLF signals associated with strong earthquakes M ≥7.0, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 409–428, TERRAPUB, Tokyo, 1994.

    Google Scholar 

  66. Mortensen, C. E. and M. J. S. Johnston, The nature of surface tilt along 85 km of the San Andreas fault: preliminary results from a 14-instrument array, Pure Appl. Geophys, 113, 237–249, 1975.

    Article  Google Scholar 

  67. Nardi, A. and M. Caputo, Perspective electric earthquake precursors observed in the Apennines, Eighth Workshop on Non Linear Dynamics and Earthquake Prediction, ICTP, SMR.1676-20, Trieste, 03–15 October 2005. Also in: Boll. Geofis. Teorica Appl., 47, 3–12, 2006.

    Google Scholar 

  68. Nomikos, K., F. Vallianatos, Kaliakatsos, S. Sideris, and M. Bakatsakis, Latest aspects of telluric and electromagnetic variations associated with shallow and intermediate depth earthquakes in South Aegean, Ann. Geofis., XL, 361–374, 1997.

    Google Scholar 

  69. Nur, A. M., H. Ron, and O. Scotti, Fault Mechanisms and the Kinematics of Block rotation, Geology, 14, 746–749, 1986.

    Article  Google Scholar 

  70. Ohta, K., K. Umeda, N. Watanabe, and M. Hayakawa, ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan, Nat. Hazard Earth Syst. Sci., 1, 37–42, 2001.

    Article  Google Scholar 

  71. Oike, K. and T. Ogawa, Electromagnetic radiations from shallow earthquake observed in the LF range, J. Geomag. Geoelectr., 38, 1031–1040, 1986.

    Article  Google Scholar 

  72. Park, S. K., M. J. S. Johnston, T. R. Madden, F. D. Morgan, and H. F. Morrison, Electromagnetic precursors to earthquakes in the ULF band: a review of observations and mechanisms, Rev. Geophys., 31, 117–132, 1993.

    Article  Google Scholar 

  73. Parrot, M., Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events, J. Geophys. Res., 99, 23339–23347, 1994.

    Article  Google Scholar 

  74. Parrot, M., The micro-satellite DEMETER, J. Geodyn., 33, 535–541, 2002.

    Article  Google Scholar 

  75. Parrot, M. and M. M. Mogilevsky, VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere, Phys. Earth Planet. Inter, 57, 86–99, 1989.

    Article  Google Scholar 

  76. Parrot, M., J. Achache, J. J. Berthelier, E. Blanc, A. Deschamps, F. Lefeuvre, M. Menvielle, J. L. Plantet, P. Tarits, and J. P. Villain, High Frequency seismo-electromagnetic effects, Phys. Earth Planet. Inter, 77, 65–83, 1993.

    Article  Google Scholar 

  77. Peresan, A., V. Kossobokov, L. Romashkova, and G. F. Panza, Intermediate-term middel-range earthquake prediction in Italy: a review, Earth Sci. Rev., 69, 97, 2005.

    Google Scholar 

  78. Pevnev, A. K., Earthquake prediction: geodetic aspects of the problem, Izv. Akad. Nauk SSSR, Fizika Zemli, 12, 88–98, 1988.

    Google Scholar 

  79. Pevnev, A. K., Deterministic geodetic prediction of preparation areas of strong crustal earthquakes, Earthquake prediction, Dushanbe, Donish, 11, 11–23, 1989.

    Google Scholar 

  80. Picozza, P.(PAMELA/ARINA collaboration), The PAMELA MISSION, http://wizard.roma2.infn.it/pamela/index.htm, 2003.

    Google Scholar 

  81. Pulinets, S. A., Space Technologies for short-term earthquake warning, Adv. Space Res., 37, 643–652, 2006.

    Article  Google Scholar 

  82. Pulinets, S. A., K. A. Boyarchuk, V. V. Hegai, V. P. Kim, and A. M. Lomonosov, Quasi-electrostatic model of atmosphere-thermosphere-ionosphere coupling, Adv. Space Res., 26, 1209–1218, 2000.

    Article  Google Scholar 

  83. Pustovetov, V. P. and A. B. Malyshev, Space-Time Correlation of Earthquakes and High-Energy Particle Flux Variations in the Inner Radiation Belt, Cosmic Res., 31, 84–90, 1993.

    Google Scholar 

  84. Rodger, C. J., R. L. Dowden, and N. R. Thomson, Observations of Electromagnetic Activity Associated with Earthquakes by Low-Altitude Satellites, in Atmospheric and Ionospheric Electromagnetic Phenomena As-sociatedwith Earthquakes, edited by M. Hayakawa, pp. 697–710, TERRAPUB, Tokyo, 1999.

    Google Scholar 

  85. Salvini, F, Block tectonics in Thin-skin Style-deformed regions: Examples from Structural Data in the Central Apennines, Ann. Geofis., XXXVI, 97–109, 1993.

    Google Scholar 

  86. Serebryakova, O. N., S. V. Bilichenko, V. M. Chmyrev, M. Parrot, J. L. Rauch, F. Lefeuvre, and O. A. Pokhotelov, Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellite, Geophys. Res. Lett., 19, 91–94, 1992.

    Article  Google Scholar 

  87. Sgrigna, V. (Principal Investigator), Esperia Science Team, ESPERIA Phase A Report, Italian Space Agency (ASI), Program for Scientific Missions dedicated to Earth Sciences, Rome, July 2001, pp. 194, 2001.

    Google Scholar 

  88. Sgrigna, V. and V. Malvezzi, Preseismic creep strains revealed by ground tilt measurements in central Italy on the occasion of the 1997 Umbria-Marche Apennines earthquake sequence, Pure Appl. Geophys., 160, 1493–1515, 2003.

    Article  Google Scholar 

  89. Sgrigna, V., R. Console, L. Conti, A. Galper, V. Malvezzi, M. Parrot, P. Picozza, R. Scrimaglio, P. Spillantini, and D. Zilpimiani, Preseismic Natural Emissions from the Earth’s Surface and their effects in the near Earth Space, A project for monitoring Earthquakes from Space, EOS Trans., AGU, 83, T22B-10, n.19, S356, 2002a.

    Article  Google Scholar 

  90. Sgrigna, V., C. D’ambrosio, and T. B. Yanovskaya, Numerical modeling of preseismic slow movements of crustal blocks caused by quasi-horizontal tectonic forces, Phys. Earth Planet. Inter., 129, 313–324, 2002b.

    Article  Google Scholar 

  91. Sgrigna, V., L. Carota, L. Conti, M. Corsi, A. Galper, P. Picozza, and L. Stagni, Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observations, J. Atm. Solar-Terrestrial Phys., 67, 1448–1462, 2005.

    Article  Google Scholar 

  92. Sgrigna, V., Description and Testing of ARINA and LAZIO/EGLE instruments in Space within the ESPERIA mission project and the DEMETER Guest Investigation Programme. DEMETER Guest Investigator Workshop, CNES, Paris, France, 2–4 May 2005, 2005b.

    Google Scholar 

  93. Sgrigna, V., A. Buzzi, L. Conti, P. Picozza, C. Stagni, and D. Zilpimiani, Seismo-induced Effects in the Near-Earth Space: Combined Ground and Space Investigations as a contribution to Earthquake Prediction, Tectonophysics, 431, 153–171, 2006.

    Article  Google Scholar 

  94. Sorokin, V. M., V. M. Chmyrev, and A. K. Yaschenko, Electrodynamic model of the lower atmosphere and the ionosphere coupling, J. Atm. Sol. Terr. Phys., 63, 1681–1691, 2001.

    Article  Google Scholar 

  95. Stavrakas, I., C. Anastasiadis, D. Triantis, and F. Vallianatos, Piezo-stimulated currents in marble samples: Precursory and concurrent with failure signals, Natural Hazards Earth Systems Sci., 3, 243–247, 2003.

    Article  Google Scholar 

  96. Surkov, V., ULF Electromagnetic Perturbations Resulting from the Fracture and Dilatancy in the Earthquake Preparation Zone, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa, pp. 371–382, TERRAPUB, Tokyo, 1999.

    Google Scholar 

  97. Teisseyre, R., Generation of electric field in an earthquake preparation zone, Ann. Geofis., 40, 297–304, 1997.

    Google Scholar 

  98. Thatcher, W. and N. Fujita, Deformation of the Mikata Rhombus: Strain Buildup Following the 1923 Kanto Earthquake, Central Honshu, Japan, J. Geophys. Res., 89, 2102–2106, 1984.

    Google Scholar 

  99. Tzanis, A. and F. Vallianatos, Distributed power-law seismicity changes and crustal deformation in the EW Hellenic Arc, Nat. Hazards Earth Systems Sci., 3, 2003.

  100. Uyeda, S., K. Sulaiman Al-Damegh, E. Dologlou, and T. Nagao, Some relationship between VAN seismic electric signals (SES) and earthquake parameters, Tectonophysics, 304, 41–55, 1999.

    Article  Google Scholar 

  101. Vallianatos, F. and A. Tzanis, A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa, pp. 287–305, TERRAPUB, Tokyo, 1999.

    Google Scholar 

  102. Vallianatos, F., D. Triantis, A. Tzanis, C. Anastasiadis, and I. Stavrakas, Electric earthquake precursors: from laboratory results to field observations, Phys. Chem. Earth, 29, 339–351, 2004.

    Article  Google Scholar 

  103. Varotsos, P., K. Alexopoulos, M. Lazaridou, and T. Nagao, Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990, Tectonophysics, 224, 269–288, 1993.

    Article  Google Scholar 

  104. Varotsos, P., N. Sarlis, M. Lazaridou, and P. Kapiris, Transmission of stress induced electric signals in dielectric media, J. Appl. Phys., 83, 60–70, 1997.

    Article  Google Scholar 

  105. Voronov, S. A., A. M. Galper, S. V. Koldashov, L. V. Maslennikov, V. V. Mikhailov, N. V. Nikitina, and A. V. Popov, Increases in High Energy Charged Particle Fluxes near the South Atlantic Magnetic Anomaly and the Seismicity of the Earth, Cosmic Res., 28, 789–791, 1990.

    Google Scholar 

  106. Warwick, J. W., C. Stoker, and T. R. Meyer, Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960, J. Geophys. Res., 87, 2851–2859, 1982.

    Article  Google Scholar 

  107. Zaslavski, Y., M. Parrot, and E. Blanc, Analysis of TEC measurements above active seismic reagions, Phys. Earth Planet. Inter, 105, 219–228, 1998.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Sgrigna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sgrigna, V., Buzzi, A., Conti, L. et al. The ESPERIA satellite project for detecting seismo-associated effects in the topside ionosphere. First instrumental tests in space. Earth Planet Sp 60, 463–475 (2008). https://doi.org/10.1186/BF03352813

Download citation

Key words

  • Seismicity
  • earthquake precursors
  • seismo-electromagnetic emissions
  • satellite
  • ionosphere