Skip to main content


Southern Ocean mass variation studies using GRACE and satellite altimetry

Article metrics

  • 384 Accesses

  • 9 Citations


The Southern Ocean is a major link between the world oceans via complicated processes associated with the melting and accumulation of the vast Antarctic ice sheets and the surrounding sea ice. The Southern Ocean sea level is poorly observed except from recent near-polar orbiting space geodetic satellites. In this study, the Southern Ocean mass variations at the seasonal scale are compared using three independent data sets: (1) the Gravity Recovery And Climate Recovery Experiment (GRACE) observed ocean bottom pressure (OBP), (2) steric-corrected satellite altimetry (ENVISAT) and, (3) the Estimating the Circulation and Climate of the Ocean (ECCO) model OBP data. The height difference between sea level derived from altimetry and steric sea level contains the vertical displacement of the Earth surface due to elastic loading. Here we provide a formulation of this loading term which has not been considered previously in other studies and demonstrate that it is not negligible, especially for regional studies. In this study, we first conduct a global comparison using steric-corrected JASON-1 altimetry with GRACE to validate our technique and to compare with recent studies. The global ocean mass variation comparison shows excellent agreement with high correlation (0.81) and with discrepancies at 3–5 mm RMS. However, the discrepancies in the Southern Ocean are much larger at 12–17 mm RMS. The mis-modeling of geocenter variations and the second degree zonal harmonic (J2) degrade the accuracy of GRACE-derived mass variations, and the choice of ocean temperature data sets and neglecting the loading correction on altimetry affect the OBP comparisons between GRACE and altimetry. This study indicates that the satellite observations (GRACE and ENVISAT) are capable of providing an improved constraint of oceanic mass variations in the Southern Ocean.


  1. Andersen, O. and J. Hinderer, Global inter-annual gravity changes from GRACE: Early results, Geophys. Res. Lett., 32, L01402, doi:10. 1029/2004GL020948, 2005.

  2. Aoki, S., Coherent sea level response to the Antarctic Oscillation, Geophys. Res. Lett., 29(20), 1950, doi:10.1029/2002GL015733, 2002.

  3. Cabanes, C., A. Cazenave, and C. Le Provost, Sea level changes from TOPEX-POSEIDON altimetry for 1993–1999 and possible warming of the Southern Oceans, Geophys. Res. Lett., 28(1), 9–12, 2000GL011962, 2001.

  4. Cazenave, A., F. Remy, K. Dominh, and H. Douville, Global ocean mass variation, continental hydrology and the mass balance of Antarctica ice sheet at seasonal time scale, Geophys. Res. Lett., 27, 3755–3758, 2000.

  5. Chambers, D., Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res., 111, C03010, doi:10. 1029/2005JC002914, 2006.

  6. Chambers, D., J. Wahr, and R. Nerem, Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, doi:10.1029/2004GL020461, 2004.

  7. Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104(B2), 2683–2690, 1999.

  8. Chen, J. L., C. R. Wilson, B. D. Tapley, J. S. Famiglietti, and M. Rodell, Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models, J. Geod., 79, 532–539, doi:10.1007/s00190-005-0005-9, 2005.

  9. Davis, J., P. Elosequi, J. Mitrovica, and M. Tamisiea, Climate-driven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, L24605, doi:10.1029/2004GL021435, 2004.

  10. Fenoglio-Marc, L., J. Kusche, and M. Becker, Mass variation in the Mediterranean Sea from GRACE and its validation by altimetry, steric and hydrologic fields, Geophys. Res. Lett., 33, L19606, doi:10. 1029/2006GL026851, 2006.

  11. Fukumori, I., A partitioned Kalman filter and smoother, Monthly Weather Rev., 130, 1370–1383, 2002.

  12. Fukumori, I., R. Raghunath, L. Fu, and Y. Chao, Assimilation of TOPEX/POSIEDON altimeter data into a global ocean circulation model: How good are the results?, J. Geophys. Res., 104(C11), 25,647–25,665, 1999.

  13. Garcia, D., G. Ramillien, A. Lombard, and A. Cazenave, Steric sealevel variations inferred from combined Topex/Poseidon altimetry and GRACE gravimetry, Pure Appl. Geophys., 164, 721–731, 2007.

  14. Gille, S.,Warming of the Southern Ocean, Science, 295, 1275–1277, 2002.

  15. Gille, S., How nonlinearities in the equation of state of seawater can confound estimates of steric sea level change, J. Geophys. Res., 109, C03005, doi:10.1029/2003JC002012, 2004.

  16. Greatbatch, R. J., A note on the representation of steric sea level in models that conserve volume rather than mass, J. Geophys. Res., 99, 12767–12771, 1994.

  17. Guo, J. Y., Y. B. Li, Y. Huang, H. T. Deng, S. Q. Xu, and J. S. Ning, Green’s function of the deformation of the Earth as a result of atmospheric loading, Geophys. J. Int., 159, 53–68, doi:10.1111/j.1365-246X.2004.02410.x, 2004.

  18. Han, S. C., C. K. Shum, and A. Braun, High-resolution continental water storage recovery from low-low satellite-to-satellite tracking, J. Geodyn., 39, 11–28, 2005a.

  19. Han, S. C., C. K. Shum, C. Jekeli, C. Y. Kuo, C. Wilson, and K. W. Seo, Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancements, Geophys. J. Int., 163(1), 18–25, doi:10.1111/j.1365- 246X.2005.02756.x, 2005b.

  20. Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr., 62, 155–170, 2006.

  21. Kuo, C., C. Shum, A. Braun, I. Fukumori, Z. Xing, and Y. Yi, Southern Ocean sea level variation studies using steric data, GRACE ocean mass variations and ocean modeling, Proc. Gravity, Geoid and Space Mission (Abstract), Porto, Portugal, August 30–September 3, 2004a.

  22. Kuo, C. Y., A. Braun, S. C. Han, C. K. Shum, Y. Yi, K. Shibuya, K. Doi, and K. Matsumoto, Oceanic mass constraint studies in East Antarctica Ocean, Proc. 15th International Symposium on Earth Tides (Abstract), Ottawa, Canada, August 2–6, 2004b.

  23. Lee, T. and I. Fukumori, Interannual to decadal variation of tropicalsubtropical exchange in the Pacific Ocean: boundary versus interior pycnocline transports, J. Climate, 16, 4022–4042, 2003.

  24. Lombard, A., D. Garcia, G. Ramillien, A. Cazenave, R. Biancale, J. M. Lemoine, F. Flechtner, R. Schmidt, and M. Ishii, Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet. Sci. Lett., 254, 194–202, doi:10.1016/j.epsl.2006.11.035, 2007.

  25. Marshall, J. C., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finitevolume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, 1997.

  26. Matsumoto, K., T. Sato, H. Fujimoto, Y. Tamura, M. Nishino, R. Hino, T. Higashi, and T. Kanazawa, Ocean bottom pressure observation off Sanriku and comparison with ocean tide models, altimetry, and barotropic signals from ocean models, Geophys. Res. Lett., 33, L16602, doi:10.1029/2006GL026706, 2006.

  27. Orsi, A. H., T. Whitworth, and W. D. Nowling, On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea Res., Ser. I, 42, 641–673, 1995.

  28. Ries, J., Low degree harmonics in GRACE monthly solutions, Joint CHAMP/GRACE Science Meeting,, Potsdam, Germany, July 5–8, 2004.

  29. Shum, C., S. Han, C. Kuo, K. Seo, and C. Wilson, Assessment of GRACE time-variable gravity observables: A new filtering technique to enhance signal spatial resolutions, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G31C-0814, San Francisco, December 13–17, 2004.

  30. Sigman, D., S. Jaccard, and G. Haug, Polar ocean stratification in a cold climate, Nature, 428, 59–63, 2004.

  31. Song, Y. T. and V. Zlotnicki, Subarctic ocean-bottom-pressure oscillation and its link to the tropical Pacific ENSO oscillation, J. Climate, 2005 (in press).

  32. Stephens, J., T. Antonov, T. P. Boyer et al., World Ocean Atlas 2001, vol. 1, Temperatures, NOAA Atlas NESDIS 49, edited by S. Levitus, 176 pp., U.S. Govt. Print. Office, Washington, D.C., 2002.

  33. Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, The Gravity Recovery and Climate Experiment; Mission Overview and Early Results, Geophys. Res. Lett., 31(9), 10.1029/2004GL019920, 2004a.

  34. Tapley, B. D., S. Bettadpur, J. Ries, P. Thompson, and M. Watkins, GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503–505, 2004b.

  35. Wahr, J., Deformation induced by polar motion, J. Geophys. Res., 90, 9363–9368, 1985.

  36. Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103(B12), 30,205–30,229, 1998.

  37. Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, L11501, doi:10. 1029/2004GL019779, 2004.

  38. Zlotnicki, V., J. Wahr, I. Fukumori, and Y. T. Song, Antarctic circumpolar current transport variability during 2003–05 from GRACE, J. Phys. Oceanogr., 37, 230–244, 2007.

Download references

Author information

Correspondence to Chung-Yen Kuo.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Southern Ocean
  • altimetry