Skip to main content

Assessing intraplate earthquake hazards from satellite geopotential field observations

Abstract

Satellite magnetic and gravity field observations provide important constraints on the poorly understood lithospheric properties of intraplate earthquakes because they map lateral long-wavelength contrasts in magnetization and density, respectively, related to petrological, structural, and thermal variations that help control the distribution of lithospheric stress. These anomalies are each a product of the vertically integrated physical property times the layer thickness. Thus, they constrain and enhance the geological utility of near-surface geopotential surveys, as well as seismic, GPS, and other geophysical observations that map the geological and dynamic properties of the lithosphere. To illustrate this synergy, we consider the influence of the US Transcontinental Magnetic Anomaly (TMA) on crustal stress and earthquake activity along the 38th parallel. In another example, we compare crustal earthquake stress constraints from gravity and seismic observations of the US mid-continent and North Andes microplate where starkly contrasting plate tectonic forces operate.

References

  1. Arkani-Hamed, J., Differential reduction to the pole: Revisited, Geophysics, 72, 613–620, 2007.

    Article  Google Scholar 

  2. Artyushkov, E. V., Stresses in the lithosphere caused by crustal thickness inhomogeneities, J. Geophys. Res., 78, 7675–7708, 1973.

    Article  Google Scholar 

  3. Bouchon, M., The complete synthesis of seismic crustal phases at regional distances, J. Geophys. Res., 87, 1735–1741, 1982.

    Article  Google Scholar 

  4. Braile, L. W. and C. S. Chiang, The continental Mohorovicic discontinuity: Results from near-vertical and wide-angle seismic reflection studies, in Reflection seismology: A Global Perspective, edited by Barazangi, M. and L. Brown, AGU Geodynamics Series, 13, 257–272, 1985.

    Article  Google Scholar 

  5. Campillo, M., M. Bouchon, and B. Massinon, Theoretical study of the excitation, spectral characteristics, and geometrical attenuation of regional seismic pluses, Bull. Seismol. Soc. Am., 74, 79–90, 1984.

    Google Scholar 

  6. Cordell, L. and P. Taylor, Investigation of magnetization and density of a North Atlantic Seamount using Poisson’s Theorem, Geophysics, 36, 919–937, 1971.

    Article  Google Scholar 

  7. Culotta, R. C., T. Pratt, and J. Oliver, A tale of two sutures: COCORP’s deep seismic surveys of the Grenville Province in the eastern U.S. Mid-continent, Geology, 18, 646–649, 1990.

    Article  Google Scholar 

  8. Fuller, M. D., Expression of E-W fractures in magnetic surveys in parts of the U.S.A, Geophysics, 29, 602–622, 1964.

    Article  Google Scholar 

  9. Gupta, I. N. and D. L. McLaughlin, Attenuation of ground motion in the eastern United States, Bull. Seismol. Soc. Am., 77, 366–383, 1987.

    Google Scholar 

  10. Hansen, M. C., The geology of Ohio—The Precambrian, Ohio Geology, Ohio Div. Geol. Survey, Winter, 1–6, 1996.

    Google Scholar 

  11. Hernandez, O. and R. R. B von Frese, Isostatically disturbed terrains of the northwestern Andes Mountains from spectrally correlated free air and gravity terrain data, Earth Sciences Res. J., 10(2), 131–146, 2006.

    Google Scholar 

  12. Heyl, A. V., the 38th parallel lineament and its relationship to ore deposits, Economic Geology, 67, 879–894, 1972.

    Article  Google Scholar 

  13. Kennett, B. L. N., On regional S, Bull. Seismol. Soc. Am., 75, 1077–1086, 1985.

    Google Scholar 

  14. Kim, H. R., Antarctic Lithospheric Anomalies from Ørsted Satellite and Near Surface Magnetic Observations, (Unpubl. Ph.D.-dissertation), Dept. of Geological Sciences, The Ohio State University, 160 pp, 2002.

    Google Scholar 

  15. Kim, J. W., R. R. B von Frese, and H. R. Kim, Crustal modeling from spectrally correlated free-air and terrain gravity data A case study of Ohio, Geophysics, 65(4), 1057–1069, 2000.

    Article  Google Scholar 

  16. Langel, R. A. and W. J. Hinze, The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective, pp. 429, Cambridge University Press, 1998.

    Google Scholar 

  17. Lemoine, F. G., D. S. Chinn, S. M. Cox, J. K. Factor, S. C. Kenyon, S. M. Klosko, S. B. Luttcke, T. R. Olson, E. C. Pavlis, N. K. Pavlis, R. H. Rapp, M. H. Torrence, R. G. Trimmer, Y. M. Wang, and R. G. Williamson, The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, National Aeronautics and Space Administration (NASA), Scientific and Technical Information Office, NASA Technical Paper 01488341, NASA/TP-1998206861, 1998.

    Google Scholar 

  18. Levander, A., USArray design implications for wavefield imaging in the lithosphere and upper mantle, The Leading Edge, 22, 250–255, 2003.

    Article  Google Scholar 

  19. Lucius, J. E. and R. R. B. von Frese, Aeromagnetic and gravity anomaly constraints on the crustal geology of Ohio, Geol. Soc. Am. Bull., 100, 104–116, 1988.

    Article  Google Scholar 

  20. Maus, S., M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kushinov, and N. Olsen, Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164, 319–330, 2006.

    Article  Google Scholar 

  21. Mayhew, M. A., H. H. Thomas, and P. J. Wasilewski, Satellite and surface geophysical expression of anomalous crustal structure in Kentucky and Tennessee, Earth Planet. Sci. Lett., 58, 395–405, 1982.

    Article  Google Scholar 

  22. Meltzer, A., EarthScope: Opportunities and challenges for earth-science research and education, The Leading Edge, 22, 268–271, 2003.

    Article  Google Scholar 

  23. Moores, E. M., Southwest United State-East Antarctica (SWEAT) connection—A hypothesis, Geology, 19, 425–428, 1991.

    Article  Google Scholar 

  24. Olsen, K. H. and L. W Braile, Seismograms of explosions at regional distances in the Western United States: Observations and reflectivity method modeling, in Identification of Seismic Sources Earthquake or Underground Explosion, edited by Husebye, E. S. and S. Mykkeltveit, p. 453–466, D. Reidel Publishing Co., 1981.

    Google Scholar 

  25. Owens, T. J. and J. Fowler, New instrumentation drives discovery of the earth’s deep interior, The Leading Edge, 22, 220–223, 2003.

    Article  Google Scholar 

  26. Pratt, T., R. Culotta, E. Hauser, D. Nelson, L. Brown, S. Kaufman, J. Oliver, and W. Hinze, Major Proterozoic basement features of the eastern Midcontinent of North America revealed by recent COCORP profiling, Geology, 17, 505–509, 1989.

    Article  Google Scholar 

  27. Purucker, M., B. Langlais, N. Olsen, G. Hulot, and M. Mandea, The southern edge of cratonic North America: Evidence from new satellite magnetometer observations, Geophys. Res. Lett., 29(15), 8000, doi:10.1029/2001GL013645, 2002.

    Article  Google Scholar 

  28. Schnetzler, C. S. and R. J. Allenby, Estimation of lower crust magnetization from satellite derived anomaly field, Tectonophysics, 93, 33–45, 1983.

    Article  Google Scholar 

  29. Schwartz, S. Y. and D. H. Christensen, The 12 July 1986 St. Marys, Ohio earthquake and recent seismicity in the Anna, Ohio seismogenic zone, Seismol. Res. Lett., 59, 57–62, 1988.

    Google Scholar 

  30. Seeber, L. and J. G. Armbruster, Recent and Historic Seismicity in Northeastern Ohio: Reactivation of Precambrian Faults and the Role of Deep Fluid Injection, U.S. Nuclear Regulatory Commission Rept, 1988.

    Google Scholar 

  31. Smith, A. G., A. M. Hurley, and J. C. Briden, Phanerozoic Palaeocontinental World Maps, Cambridge University Press, 1981.

    Google Scholar 

  32. Starich, P. J., W. J. Hinze, and L. W. Braile, The south-central U.S. magnetic anomaly, Soc. Expl. Geophys., 55th Annual International Meeting and Exposition, Technical Program, 204–206, 1985.

    Google Scholar 

  33. Taylor, P. T. and J. J. Frawley, Magsat anomaly data over the Kursk region, USSR, Phys. Earth Planet. Inter., 45, 255–265, 1987.

    Article  Google Scholar 

  34. Thomas, H. H., Petrologic models of the northern Mississippi Embayment based upon satellite magnetic and ground based geophysical data, Earth Planet. Sci. Lett., 70, 115–120, 1984.

    Article  Google Scholar 

  35. USGS, Advance National Seismic System (ANSS), (http://earthquake.usgs.gov/research/monitoring/anss/), 2006.

    Google Scholar 

  36. Vargas, C. A. and J. P. Duran, State of stress of northwestern South America, Earth Sciences Res. J., 9(1), 41–49, 2005.

    Google Scholar 

  37. von Frese, R. R. B., W. J. Hinze, and L. W. Braile, Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion, Earth Planet. Sci. Lett., 53, 69–83, 1981b.

    Article  Google Scholar 

  38. von Frese, R. R. B., W. J. Hinze, L. W. Braile, and A. J. Luca, Spherical earth gravity and magnetic anomaly modeling by Gauss-Legendre Quadrature integration, J. Geophys., 49, 234–242, 1981b.

    Google Scholar 

  39. von Frese, R. R. B., W. J. Hinze, and L. W. Braile, Regional North American gravity and magnetic anomaly correlations, Geophys. J. R. Astr. Soc., 69, 745–761, 1982.

    Article  Google Scholar 

  40. von Frese, R. R. B., W. J. Hinze, R. Olivier, and C. R. Bentley, Regional magnetic anomaly constraints on continental breakup, Geology, 14, 68–71, 1986.

    Article  Google Scholar 

  41. von Frese, R. R. B., M. B. Jones, J. W. Kim, and W. S. Li, Spectral correlation of magnetic and gravity anomalies of Ohio, Geophysics, 62, 365–380, 1997b.

    Article  Google Scholar 

  42. von Frese, R. R. B., J. W. Kim, L. Tan, D. E. Alsdorf, C. A. Raymond, and P. T. Taylor, Satellite-measured magnetic anomaly fields of the Antarctic lithosphere, in The Antarctic Region: Geophysical Evolution and Processes, edited by Ricci, C. A., pp. 1105–1110, Terra Antarctica Publ., 1997b.

  43. Wagoner, R. H. and J.-L. Chenot, Metal Forming Analysis, 376 p., Cambridge University Press, 2001.

    Google Scholar 

  44. Wesson, R. L. and C. Nicholson (eds), Studies of the January 31, 1986, Northeastern Ohio earthquake: U.S.Geological Survey Open-File Report 86331, 131 p., 1986.

    Google Scholar 

  45. Williams, H. and R. D. Hatcher, Jr., Appalachian suspect terrains, in con-tribuction to the tectonics of mountain chains, edited by Hatcher, R. D., Jr., Williams, H. and Zietz, I., Geo. Soc. Am. Mon., 158, 33–53, Washington, 1983.

    Article  Google Scholar 

  46. Zoback, M. L., Stress field constraints on intraplate seismicity in eastern North America, J. Geophys. Res., 97, 11761–11782, 1992.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyung Rae Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Frese, R.R.B., Kim, J.W., Hernandez, O. et al. Assessing intraplate earthquake hazards from satellite geopotential field observations. Earth Planet Sp 60, 487–495 (2008). https://doi.org/10.1186/BF03352815

Download citation

Key words

  • Earthquake
  • hazards
  • gravity
  • magnetic
  • satellite data