Skip to main content

Analysis of gravity field variations derived from Superconducting Gravimeter recordings, the GRACE satellite and hydrological models at selected European sites

Abstract

If we restrict the spatial resolution to a half-wavelength of about 1500 km and the temporal resolution to 1 month, GRACE-derived temporal gravity variations can be resolved within the μgal (10-8 m/s2) range. A comparison with ground gravity measurements from selected Superconducting Gravimeter (SG) stations forming the Global Geodynamics Project (GGP) provides an independent validation. For this study, five European SGstations were selected that both cover a large test field and allow closely located SG-stations to be studied. Prior to this comparison, GRACE and SG data sets have to be reduced for the same known gravity effects due to Earth and ocean tides, pole tide, and atmosphere. After these reductions, the remaining part can be mainly attributed to mass changes in terrestrial water storage. For this reason, gravity variations derived from global hydrological models are included in the comparison of SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. For most of the SG locations investigated here, the comparison based primarily on computed correlations shows quite a good agreement among the gravity variation derived from the three different kinds of data sets: SG, GRACE, and hydrology models. The variations in SG gravity (point measurements) prove to be representative for a large area within the μgal accuracy range, if local gravity effects are removed correctly. Additionally, a methodology for an analysis of dominant common features based on the EOF-technique is proposed and illustrated. The first principal component shows strong periodicity, and the search for arbitrary periods confirms a strong common annual component, which reduces the total signal content considerably. The first eigenvector reveals common features and differences between distinct SG stations. Discrepancies between SG, GRACE, and hydrology models at individual SG stations, detected by both methods, may provide valuable hints for further investigations of respective data series.

References

  1. Abrikosov, O., F. Jarecki, J. Müller, S. Petrovic, and P. Schwintzer, The Impact of Temporal Gravity Variations on GOCE Gravity Field Recovery, in Observation of the Earth System from Space, edited by J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, and U. Schreiber, 255–269 and 304, Springer Berlin Heidelberg New York, 2006.

    Google Scholar 

  2. Ali, A. H. and V. Zlotnicki, Quality of wind stress fields measured by the skill of a barotropic ocean model: Importance of stability of the Marine Atmospheric Boundary Layer, Geophys. Res. Lett., 30(3), 1129, doi: 10.1029/2002GL016058, 2003.

    Article  Google Scholar 

  3. Biancale, R. and A. Bode, Mean and Seasonal Atmospheric Tide Models based on 3-hourly and 6-hourly ECMWF Surface Pressure Data, Scientific Technical Report STR06/01, GeoForschungsZentrum Potsdam, ISSN 1610-0956, 2006.

    Google Scholar 

  4. Boy, J. P., J. Hinderer, and G. Ferhat, Gravity changes and crustal deformation due to hydrology loading, Geophy. Res. Abstr., 7, 07166, 2005.

    Google Scholar 

  5. Boy, J. P. and J. Hinderer, Study of the seasonal gravity signal in superconducting gravimeter data, J. Geodyn., 41, 227–233, 2006.

    Article  Google Scholar 

  6. Crossley, D., J. Hinderer, O. Casula, O. Francis, H. T. Hsu, Y. Imanishi, G. Jentzsch, J. Kääriäinen, J. Merriam, B. Meurers, J. Neumeyer, B. Richter, D. Sato, K. Shihuya, and T. van Dam, Network of Superconducting Gravimeters Benefits a Number of Disciplines, EOS. Trans. Am. Geophys. Union, 80(11), 125–126, 1999.

    Article  Google Scholar 

  7. Crossley, D., J. Hinderer, and J. P. Boy, Regional gravity variations on Europe from superconducting gravimeters, J. Geodyn., 28, 325–342, 2004.

    Article  Google Scholar 

  8. Crossley, D., J. Hinderer, and J. P. Boy, Time variation of the European gravity field from superconducting gravimeters, Geophys. J. Int., 161, 257–264, doi:10.1111 /j.1365-246X.2005.02586.x, 2005.

    Article  Google Scholar 

  9. Dehant, V., Tidal Parameters for an Inelastic Earth, Phys. Earth Planet. Inter., 49, 97–116, 1987.

    Article  Google Scholar 

  10. Desai, S. D., Observing the pole tide with satellite altimetry, J. Geophys. Res., 107(C11), 3186, doi:10.1029/2001JC001224, 2002.

    Article  Google Scholar 

  11. Doll, P., F. Kaspar, and B. Lehner, A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hy-drol., 270, 105–134, 2003.

    Article  Google Scholar 

  12. Fan, Y. and H. van den Dool, The CPC global monthly soil moisture data set at 1/2 degree resolution for 1948-present, J. Geophys. Res., 109, D10102, DOI:1029/2003JD004345, 2004.

  13. Farrell, W. E., Deformation of the Earth by surface loads, Rev. Geophys. Space Phys., 10, 761–797, 1972.

    Article  Google Scholar 

  14. Flechtner, F., GFZ Level-2 Processing Standards Document for Level-2 Product Release 0003, Rev.1.1, Nov. 04, 2005, GRACE 327–743, JPL/Pasadena, 2005.

    Google Scholar 

  15. Forste, C., F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. König, K. H. Neumayer, M. Rothacher, Ch. Reigber, R. Biancale, S. Bruinsma, J.-M. Lemoine, and J. C. Raimondo, A New High Resolution Global Gravity Field Model Derived From Combination GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data, Poster G004_EGU05-A-04561 presented at EGU General Assembly 2005, Vienna, Austria, 24-29, April 2005, 2005.

    Google Scholar 

  16. Francis, O. and P. Mazzega, Global charts of ocean tide loading effects, J. Geophys. Res., 95, 11411–11424, 1990.

    Article  Google Scholar 

  17. Goodkind, J. M., The Superconducting gravimeter, Rev. Sci. Inst., 70/11, 4131–4152, 1999.

    Article  Google Scholar 

  18. Harnisch, G. and M. Harnisch, Seasonal variations of hydrological influences on gravity measurements at Wettzell, Bull. D’Inf. Marees Terr, 137, 10849–10861, 2002.

    Google Scholar 

  19. Hinderer, J. and H. Legros, Elasto-gravitational deformation, relative gravity changes and Earth dynamics, Geophys. J. Int., 97, 481–495, 1989.

    Article  Google Scholar 

  20. Hinderer, J., O. Andersen, F Lemoine, D. Crossley, and J. P. Boy, Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions, J. Geodyn., 41, 59–68, 2006.

    Article  Google Scholar 

  21. Huang, J., H. M. Van den Dool, and K. P. Georgakakos, Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts, J. Climate, 9, 1350–1362, 1996.

    Article  Google Scholar 

  22. Jekeli, C, Alternative methods to smooth the Earth’s gravity field, p. 48, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio, 1981.

    Google Scholar 

  23. Kroner, C, Hydrological effects on gravity data of the Geodynamic Observatory Moxa, J. Geodyn. Soc. Jpn., 47(1), 353–358, 2001.

    Google Scholar 

  24. Kroner, C. and T. Jahr, Hydrological experiments around the superconducting gravimeter at Moxa observatory, J. Geodyn., 2005 (in press).

    Google Scholar 

  25. Lefevre, F., FES2004 package for Jason and ENVISAT Geophysical Data Records, personal communication, 2005.

    Google Scholar 

  26. Lefevre, F, F H. Lyard, C. Le Provost, and E. J. O. Schrama, FES99: a global tide finite element solution assimilating tide gauge and altimetric information, J. Atmos. Oceanic Technol., 19, 1345–1356, 2002.

    Article  Google Scholar 

  27. Le Provost, C F Lyard, F Lefevre, and L. Roblou, FES 2002–A new version of the FES tidal solution series, Abstract Volume Jason-1 Science Working Team Meeting, Biarritz, France, 2002.

    Google Scholar 

  28. Mautz, R., Solving Nonlinear Adjustment Problems by Global Optimization, Boll. Geodes. Sci. Affini, 61(2), 2002.

  29. Mautz, R. and S. Petrovic, Erkennung von physikalisch vorhandenen Periodizitäten in Zeitreihen, ZfV Z. Geodas. Geoinform. Landmanage., 130(3), 156–165, 2005.

    Google Scholar 

  30. Meurers, B., M. Van Camp, T. Petermans, K. Verbeeck, and K. Vanneste, Investigation of local atmospheric and hydrological gravity signals in Superconducting Gravimeter time series, Geophys. Res. Abstr., 7, 07463, 2005.

    Google Scholar 

  31. Merriam, J. B., Atmospheric pressure and gravity, Geophys. J. Int., 109, 488–500, 1992.

    Article  Google Scholar 

  32. Milly, P. C. D. and A. B. Shmakin, Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) Model, J. Hydrom-eteorol., 3(3), 283–299, 2002.

    Article  Google Scholar 

  33. Neumeyer, J., P. Schwintzer, F. Barthelmes, O. Dierks, Y. Imanishi, C. Kroner, B. Meurers, H. P. Sun, and H. Virtanen, Comparison of Superconducting Gravimeter and CHAMP Satellite derived Temporal Gravity Variations, in Earth Observations with CHAMP Results from Three Years in Orbit, edited by Ch. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, 31–36, 2004a.

    Google Scholar 

  34. Neumeyer, J., J. Hagedoorn, J. Leitloff, and T. Schmidt, Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements, J. Geodyn., 38, 437–450, 2004b.

    Article  Google Scholar 

  35. Neumeyer, J., F. Barthelmes, O. Dierks, F. Flechtner, M. Harnisch, G. Harnisch, J. Hinderer, Y. Imanishi, C. Kroner, B. Meurers, S. Petrovic, Ch. Reigber, R. Schmidt, H. P. Sun, and H. Virtanen, Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and hydrology models, J. Geod., 79, 573–585, 2006.

    Article  Google Scholar 

  36. Petrovic, S., R. Schmidt, J. Wünsch, F. Barthelmes, A. Güntner, and M. Rothacher, Towards a characterization of temporal gravity field variations in GRACE observations and global hydrology models, Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS) “GRAVITY FIELD OF THE EARTH”, Harita Dergisi (Journal of Mapping, Istanbul), Special Issue, 18, 199–204, 2007.

    Google Scholar 

  37. Pick, M., J. Picha, and V Vyskocil, Theory of the Earth’s Gravity Field, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1973.

    Google Scholar 

  38. Preisendorfer, R. W., Principal component analysis in meteorology and oceanography, edited by C. D. Mobley, Elsevier Science Publishers, Amsterdam, 1988.

    Google Scholar 

  39. Reigber, Ch., R. Schmidt, F. Flechtner, R. König, U. Meyer, K. H. Neumayer, P. Schwintzer, and S. Y. Zhu, An Earth Gravity Field Model Complete to Degree and Order 150 from GRACE: EIGEN-GRACE02S, J. Geodyn., 39, 1–10, 2005.

    Article  Google Scholar 

  40. Sato, T., Y Fukuda, Y Aoyama, H. McQueen, K. Shibuya, Y Tamura, K. Asari, and M. Ooe, On the observed annual gravity variation and the effect of sea surface height variations, Phys. Earth Planet. Inter, 123, 45–63, 2001.

    Article  Google Scholar 

  41. Sato, T., J. P. Boy, Y Tamura, K. Matsumoto, K. Asari, H. P. Plag, and O. Francis, Gravity tide and seasonal gravity variation at Ny-Alesund, Svalbard in Arctic, J. Geodyn., 41, 234–241, 2006.

    Article  Google Scholar 

  42. Schmidt, R., F. Flechtner, Ul. Meyer, Ch. Reigber, F. Barthelmes, Ch. Foerste, R. Stubenvoll, R. König, K. H. Neumayer, and S. Y. Zhu, Static and Time-Variable Gravity from GRACE Mission Data, in Observation of the Earth System from Space, edited by J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, and U. Schreiber, 115–129 and 293–296, Observation of the Earth System from Space, Springer Berlin Heidelberg New York, 2005.

    Google Scholar 

  43. Schmidt, R., P. Schwintzer, F. Flechtner, Ch. Reigber, A. Güntner, P. Döll, G. Ramillien, A. Cazenave, S. Petrovic, H. Jochmann, and J. Wünsch, GRACE Observations of Changes in Continental Water Storage, Global and Planetary Change, 48/4, 259–273, 2006.

    Google Scholar 

  44. Sun, H.-P., Static deformation and gravity changes at the Earth’s surface due to the atmospheric pressure, Observatoire Royal des Belgique, Serie Geophysique Hors-Serie, Bruxelles, 1995.

    Google Scholar 

  45. Tapley, B. D. and Ch. Reigber, The GRACE mission: status and future plans, EOS Trans. AGU, 82(47), Fall Meet. Suppl., G41 C-02, 2001.

  46. Thomas, M., J. Suendermann, and E. Maier-Greiner, Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation, Geophys. Res. Lett., 12, 2457, 2001.

    Article  Google Scholar 

  47. Torge, W., Gravimetry, de Gruyter, Berlin, New York, 1989.

    Google Scholar 

  48. Vanicek, P. and E. J. Krakiwsky, Geodesy: The Concepts, North-Holland Publishing Company Amsterdam, New York, Oxford, 1982.

    Google Scholar 

  49. Virtanen, H., Hydrological studies at the gravity station Metshovi, Finland, J. Geodetic. Soc. Jpn., 47(1), 328–333, 2001.

    Google Scholar 

  50. Wahr, J., M. Molenaar, and F Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103(12), 30205–30229, 1998.

    Article  Google Scholar 

  51. Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31(11), L11501, doi: 10.1029/2004GL019779, 2004.

  52. Wenzel, H. G., The nanogal software: data processing package Eterna 3.3, Bull. Inf. Marees Terrestres, 124, 9425–9439, 1996.

    Google Scholar 

  53. Wilks, D. S., Statistical methods in the atmospheric sciences: an introduction, Academic Press, San Diego, 1995.

    Google Scholar 

  54. Zürn, W. and H. Wilhelm, Tides of the Earth, in Landolt-Börnstein, 259–299, Springer Verlag Berlin Heidelberg New York Tokyo, Vol. 2, 1984.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Neumeyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neumeyer, J., Barthelmes, F., Kroner, C. et al. Analysis of gravity field variations derived from Superconducting Gravimeter recordings, the GRACE satellite and hydrological models at selected European sites. Earth Planet Sp 60, 505–518 (2008). https://doi.org/10.1186/BF03352817

Download citation

Key words

  • Superconducting gravimetry
  • GRACE
  • temporal gravity variations
  • hydrological models
  • cross validation
  • correlation
  • EOF