Skip to main content

Constrained simultaneous algebraic reconstruction technique (C-SART) —a new and simple algorithm applied to ionospheric tomography

Abstract

A simple and relatively fast method (C-SART) is presented for tomographic reconstruction of the electron density distribution in the ionosphere using smooth fields. Since it does not use matrix algebra, it can be implemented in a low-level programming language, which speeds up applications significantly. Compared with traditional simultaneous algebraic reconstruction, this method facilitates both estimation of instrumental offsets and consideration of physical principles (expressed in the form of finite differences). Testing using a 2D scenario and an artificial data set showed that C-SART can be used for radio tomographic reconstruction of the electron density distribution in the ionosphere using data collected by global navigation satellite system ground receivers and low Earth orbiting satellites. Its convergence speed is significantly higher than that of classical SART, but it needs to be speeded up by a factor of 100 or more to enable it to be used for (near) real-time 3D tomographic reconstruction of the ionosphere.

References

  1. Andersen, A. H. and A. C. Kak, Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm, Ultrason. Img., 6, 81–94, 1984.

    Article  Google Scholar 

  2. Andreeva, E. S., V. E. Kunitsyn, and E. D. Tereshchenko, Phase-difference radio tomography of the ionosphere, Ann. Geophys., 10, 849–855, 1992.

    Google Scholar 

  3. Bhuyan, K., S. B. Singh, and P. K. Bhuyan, Application of generalized singular value decomposition to ionospheric tomography, Ann. Geophys., 22, 3437–3444, 2004.

    Article  Google Scholar 

  4. Bilitza, D., International Reference Ionosphere 2000, Radio Sci., 36(2), 261–275, 2001.

    Article  Google Scholar 

  5. Censor, Y. and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem, SIAM J. Matrix Anal. Appl., 24, 40–58, 2002.

    Article  Google Scholar 

  6. Dagum, L. and R. Menon, OpenMP: an industry-standard API for shared-memory programming, IEEE Comput. Sci. Eng., 5(1), 46–55, 1998.

    Article  Google Scholar 

  7. Feltens, J., The activities of the ionosphere working group of the International GPS Service (IGS), GPS Solutions, 7(1), 41–46, doi:0.1007/s10291-003-0051-9, 2003.

    Article  Google Scholar 

  8. Gordon, R., R. Bender, and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theor. Biol., 29, 471–482, 1970.

    Article  Google Scholar 

  9. Hajj, G. A., B. D. Wilson, C. Wang, X. Pi, and I. G. Rosen, Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter, Radio Sci., 39, doi:10.1029/2002RS002859, 2004.

  10. Hansen, P. C., The truncated SVD as a method for regularization, BIT, 27, 534–553, 1987.

    Article  Google Scholar 

  11. Hargreaves, J. K., The solar-terrestrial environment, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  12. Hernandez-Pajares, M., J. M. Juan, and J. Sanz, New approaches in global ionospheric determination using ground GPS data, J. Atmos. Solar Terr. Phys., 61, 1237–1247, 1999.

    Article  Google Scholar 

  13. Horvath, I. and S. Crozie, Software developed for obtaining GPS-derived total electron content values, Radio Sci., 42, RS2002, doi:10.1029/2006RS003452, 2007.

    Article  Google Scholar 

  14. Ivansson, S., Seismic borehole tomography—theory and computational methods, Proc. IEEE, 76(2), 328–338, 1986.

    Article  Google Scholar 

  15. Jiang, M. and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART), IEEE Trans. Image Proc., 12(8), 957–961, 2003.

    Article  Google Scholar 

  16. Kalman, R. E., A new approach to linear filtering and prediction problems, Trans. ASME—J. Basic Eng., 82(D), 35–45, 1960.

    Article  Google Scholar 

  17. Koch, K. R., Parameter estimation and hypothesis testing in linear models, Springer, Berlin, 1988.

    Google Scholar 

  18. Lee, J. K., F. Kamalabadi, and J. J. Makela, Localized three-dimensional ionospheric tomography with GPS ground receiver measurements, Radio Sci., 42, RS4018, doi:10.1029/2006RS003543, 2007.

    Article  Google Scholar 

  19. Ma, X. F., T. Murayama, G. Ma, and T. Takeda, Three-dimensional ionospheric tomography using observation data of GPS ground receivers and ionosonde by neural network, J. Geophys. Res., 110, A05308, doi:10.1029/2004JA010797, 2005.

    Google Scholar 

  20. Mailloux, G. E., R. Noumeir, and R. Lemieux, Deriving the multiplicative algebraic reconstruction algorithm (MART) by the method of convex projections (POCS), Proc. IEEE Int. Conf. Acoustics, Speech Signal Proc, 5, 457–460, 1993.

    Google Scholar 

  21. Moore, G. E., Cramming more components onto integrated circuits, Electronics, 38, 114–117, 1965.

    Google Scholar 

  22. Ray, J. and K. Senior, Geodetic techniques for time and frequency comparisons using GPS phase and code measurements, Metrologia, 42, 215–232, 2005.

    Article  Google Scholar 

  23. Raymund, T. D., Comparison of several ionospheric tomography algorithms, Ann. Geophys., 13, 1254–1262, 1995.

    Google Scholar 

  24. Ruffini, G. A. Flores, and A. Rius, GPS tomography of the ionospheric electron content with a correlation functional, IEEE Trans. Geosci. Remote Sens., 36(1), 143–153, 1998.

    Article  Google Scholar 

  25. Schaer, S., Mapping and predicting the Earth’s ionosphere using the Global Positioning System, PhD thesis, Astronomical Institute, University of Bern, 1999.

    Google Scholar 

  26. Skjellum, A., N. E. Doss, and P. V. Bangalore, Writing libraries in MPI. Proceedings of the Scalable Parallel Libraries Conference, IEEE Computer Society Press, 166–173, 1993.

    Google Scholar 

  27. Spencer, P. S. J., D. S. Robertson, and G. L. Mader, Ionospheric data assimilation methods for geodetic applications, Proceedings of IEEE PLANS 2004, 510–517, 2004.

    Google Scholar 

  28. Wen, D. B., Imaging the ionospheric electron density using a combined to-mographic algorithm, Proceedings of the International Technique Meeting of the Satellite Devision, 25–28 September 2007, Fort Worth, Texas, 2337–2345, 2007.

    Google Scholar 

  29. Wen, D. B., Y. B. Yuan, J. K. Ou, and X. L. Huo, Monitoring the three-dimensional ionospheric electron distribution using GPS observations over China, J. Earth Syst. Sci., 116(3), 235–244, 2007a.

    Article  Google Scholar 

  30. Wen, D. B., Y. B. Yuan, J. K. Ou., X. L. Huo, and K. F. Zhang, Threedimensional ionospheric tomography by an improved algebraic reconstruction technique, GPS Solutions, 11(4), 251–258, 2007b.

    Article  Google Scholar 

  31. Wen, D. B., Y. B. Yuan, J. K. Ou., X. L. Huo, and K. F. Zhang, Ionospheric temporal and spatial variations during the 18 August 2003 storm over China, Earth Planets Space, 59, 313–317, 2007c.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Hobiger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hobiger, T., Kondo, T. & Koyama, Y. Constrained simultaneous algebraic reconstruction technique (C-SART) —a new and simple algorithm applied to ionospheric tomography. Earth Planet Sp 60, 727–735 (2008). https://doi.org/10.1186/BF03352821

Download citation

Key words

  • Ionosphere
  • TEC
  • tomography
  • GNSS
  • SART
  • differential code biases