Bolduc, L., GIC observations and studies in the Hydro-Québec power system, J. Atmos. Sol-Terr. Phys, 64(16), 1793–1802, 2002.
Article
Google Scholar
Boteler, D. H., Distributed-source transmission line theory for electromagnetic induction studies, Proceedings of the 1997 Zurich EMC Symposium, URSI Supplement, 401–408, 1997.
Google Scholar
Boteler, D. H. and R. J. Pirjola, Modelling Geomagnetically Induced Currents produced by Realistic and Uniform Electric Fields, IEEE Trans. Power Delivery, 13(4), 1303–1308, 1998.
Article
Google Scholar
Boteler, D. H., R. J. Pirjola, and H. Nevanlinna, The effects of geomagnetic disturbances on electrical systems at the Earth’s surface, Adv. Space Res., 22(1), 17–27, 1998.
Article
Google Scholar
Kappenman, J. G., Geomagnetic storms and their impact on power systems, IEEE Power Eng. Rev., May 1996, 5–8, 1996.
Google Scholar
Kappenman, J. G., An Overview of the Increasing Vulnerability Trends of Modern Electric Power Grid Infrastructures and the potential consequences of Extreme Space Weather Environments, in Effects of Space Weather on Technology Infrastructure, edited by I. A. Daglis, NATO Science Series, Kluwer Academic Publishers, II. Mathematics, Physics and Chemistry,176, Chapter 14: Space Weather and the Vulnerability of Electric Power Grids, 257–286, 2004.
Chapter
Google Scholar
Kappenman, J. G., Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events—An analysis of observational evidence including the great storm of May 1921, Adv. Space Res., 38(2), doi:10.1016/j.asr.2005.08.055, 188–199, 2006.
Article
Google Scholar
Kappenman, J. G. and V. D. Albertson, Bracing for the geomagnetic storms, IEEE Spectrum, March 1990, 27–33, 1990.
Google Scholar
Lanzerotti, L. J., D. J. Thomson, and C. G. Maclennan, Engineering issues in space weather, in Modern Radio Science 1999, edited by M. A. Stuchly, 25–50, International Union of Radio Science (URSI), Oxford University Press, 1999.
Google Scholar
Lehtinen, M. and R. Pirjola, Currents produced in earthed conductor networks by geomagnetically-induced electric fields, Ann. Geophys., 3(4), 479–484, 1985.
Google Scholar
Mäkinen, T., Geomagnetically induced currents in the Finnish power transmission system, Finnish Meteorological Institute, Geophys. Publ., 101 pp., No. 32, Helsinki, Finland, 1993.
Molinski, T. S., Why utilities respect geomagnetically induced currents, J. Atmos. Sol.-Terr. Phys, 64(16), 1765–1778, 2002.
Article
Google Scholar
Pirjola, R., Induction in power transmission lines during geomagnetic disturbances, Space Sci. Rev., 35(2), 185–193, 1983.
Article
Google Scholar
Pirjola, R., Geomagnetically Induced Currents During Magnetic Storms, IEEE Trans. Plasma Sci., 28(6), 1867–1873, 2000.
Article
Google Scholar
Pirjola, R., Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems, Surv. Geophys., 23(1), 71–90, 2002.
Article
Google Scholar
Pirjola, R., Effects of space weather on high-latitude ground systems, Adv. Space Res., 36(12), doi:10.1016/j.asr.2003.04.074, 2231–2240, 2005a.
Article
Google Scholar
Pirjola, R., Averages of geomagnetically induced currents (GIC) in the Finnish 400 kV electric power transmission system and the effect of neutral point reactors on GIC, J. Atmos. Sol.-Terr. Phys., 67(7), 701–708, 2005b.
Article
Google Scholar
Pirjola, R., Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modelling, J. Atmos. Sol.-Terr. Phys, 69(12), 1305–1311, 2007.
Article
Google Scholar
Pirjola, R., Study of effects of changes of earthing resistances on geomagnetically induced currents in an electric power transmission system, Radio Sci, 43, RS1004, doi:10.1029/2007RS003704, 13 pp., 2008.
Article
Google Scholar
Pirjola, R. and M. Lehtinen, Currents produced in the Finnish 400 kV power transmission grid and in the Finnish natural gas pipeline by geomagnetically-induced electric fields, Ann. Geophys, 3(4), 485–491, 1985.
Google Scholar
Pirjola, R. J. and A. T. Viljanen, Geomagnetic Induction in the Finnish 400 kV Power System, in Environmental and Space Electromagnetics, edited by H. Kikuchi, 276–287, Chapter 6.4, Springer-Verlag, Tokyo, 1991.
Chapter
Google Scholar
Pulkkinen, A., A. Viljanen, R. Pirjola, and BEAR Working Group, Large geomagnetically induced currents in the Finnish high-voltage power system, Reports, No. 2000:2, Finnish Meteorological Institute, Helsinki, Finland, 99 pp., 2000.
Google Scholar
Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov, Modelling of space weather effects on pipelines, J. Appl. Geophys., 48(4), 233–256, 2001.
Article
Google Scholar
Pulkkinen, A., S. Lindahl, A. Viljanen, and R. Pirjola, Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather, 3, S08C03, doi:10.1029/2004SW000123, 19 pp., 2005.
Article
Google Scholar
Watermann, J., The magnetic environment—GIC and other ground effects, in Space Weather, in Research Towards Applications in Europe, edited by J. Lilensten, Springer, 269–275, Chapter 5.0, 2007.
Google Scholar
Wik, M., A. Viljanen, R. Pirjola, A. Pulkkinen, P. Wintoft, and H. Lundstedt, Calculation of Geomagnetically Induced Currents in the 400 kV Power System in Southern Sweden, Space Weather, 2008 (in press).
Google Scholar