Skip to main content

Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons

Abstract

We evaluate cyclotron resonant interactions of radiation belt electrons with VLF chorus, plasmaspheric ELF hiss and electromagnetic ion cyclotron (EMIC) waves. We assume that the Earth’s magnetic field is dipolar and that each wave mode has a Gaussian spectral density. The dependence of the resonant electron diffusion rates on the latitudinal distributions of particle density and wave power is examined. We find that while the diffusion rates can be sensitive to the latitudinal distributions of density and wave power, in general the sensitivity depends on wave mode, equatorial pitch-angle, electron energy and L-shell. We determine the effects of the latitudinal distributions of density and wave power on the electron precipitation loss timescale due to combined scattering by VLF chorus, ELF hiss and EMIC waves. Accurate modeling of radiation belt electron dynamics requires observational data on the global distributions of particle number density and wave power.

References

  1. Albert, J. M., Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma, J. Geophys. Res., 108(A6), 1249, doi:10.1029/2002JA009792, 2003.

    Article  Google Scholar 

  2. Albert, J. M., Simple approximations of quasi-linear diffusion coefficients, J. Geophys. Res., 112, A12202, doi:10.1029/2007JA012551, 2007.

    Article  Google Scholar 

  3. Denton, R. E., et al., Distribution of density along magnetospheric field lines, J. Geophys. Res., 111, A04213, doi:10.1029/2005JA011414, 2006.

    Google Scholar 

  4. Fraser, B. J. and T. S. Nguyen, Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?, J. Atmos. Sol. Terr. Phys., 63, 1225–1247, 2001.

    Article  Google Scholar 

  5. Horne, R. B., et al., Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811, 2005.

    Google Scholar 

  6. Lyons, L. R., Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys., 12, 417–432, 1974.

    Article  Google Scholar 

  7. Meredith, N. P., R. B. Horne, and R. R. Anderson, Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13165–13178, 2001.

    Article  Google Scholar 

  8. Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson, Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, doi:10.1029/2004JA010387, 2004.

    Google Scholar 

  9. Miyoshi, Y., et al., Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, J. Geophys. Res., 108(A1), 1004, doi:10.1029/2001JA007542, 2003.

    Article  Google Scholar 

  10. Omura, Y. and D. Summers, Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600, 2006.

    Google Scholar 

  11. Reinisch, B. W., et al., Plasma density distribution along the magne-tospheric field: RPI observations from IMAGE, Geophys. Res. Lett., 28(24), 4521–4524, 2001.

    Article  Google Scholar 

  12. Roth, I., M. Temerin, and M. K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631–638, 1999.

    Article  Google Scholar 

  13. Santolik, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin, A microscopic and nanoscopic view of stormtime chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801, doi:10.1029/2003GL018757, 2004.

    Google Scholar 

  14. Sheeley, B. W., M. B. Moldwin, H. K. Rassoul, and R. R. Anderson, An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25631–25642, 2001.

    Article  Google Scholar 

  15. Shprits, Y. Y., W. Li, and R. M. Thorne, Controlling effect of the pitch angle scattering rates near the edge of the loss cone on electron lifetimes, J. Geophys. Res., 111, A12206, doi:10.1029/2006JA011758, 2006.

    Article  Google Scholar 

  16. Spasojevic, M., et al., Global response of the plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 108(A9), 1340, doi:10.1029/2003JA009987, 2003.

    Article  Google Scholar 

  17. Summers, D., Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere, J. Geophys. Res., 110, A08213, doi:10.1029/2005JA011159, 2005.

    Google Scholar 

  18. Summers, D. and C. Ma, A model for generating relativistic electrons in the Earth’s inner magnetosphere based on gyroresonant wave-particle interactions, J. Geophys. Res., 105, 2625–2640, 2000.

    Article  Google Scholar 

  19. Summers, D. and R. M. Thorne, Relativistic electron pitch angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108(A4), 1143, doi:10.1029/2002JA009489, 2003.

    Article  Google Scholar 

  20. Summers, D., R. M. Thorne, and F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103, 20487–20500, 1998.

    Article  Google Scholar 

  21. Summers, D., et al., Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29(24), 2174, doi:10.1029/2002GL016039, 2002.

    Article  Google Scholar 

  22. Summers, D., B. Ni, and N. P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res., 112, A04206, doi:10.1029/2006JA011801, 2007a.

    Google Scholar 

  23. Summers, D., B. Ni, and N. P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves, J. Geophys. Res., 112, A04207, doi:10.1029/2006JA011993, 2007b.

    Google Scholar 

  24. Thorne, R. M., T. P. O’Brien, Y. Y. Shprits, D. Summers, and R. B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, doi:10.1029/2004JA010882, 2005.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danny Summers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Summers, D., Ni, B. Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons. Earth Planet Sp 60, 763–771 (2008). https://doi.org/10.1186/BF03352825

Download citation

Key words

  • Earth’s radiation belt
  • wave-particle interactions
  • magnetospheric plasma waves
  • electron precipitation