Skip to main content

Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons

Abstract

We evaluate cyclotron resonant interactions of radiation belt electrons with VLF chorus, plasmaspheric ELF hiss and electromagnetic ion cyclotron (EMIC) waves. We assume that the Earth’s magnetic field is dipolar and that each wave mode has a Gaussian spectral density. The dependence of the resonant electron diffusion rates on the latitudinal distributions of particle density and wave power is examined. We find that while the diffusion rates can be sensitive to the latitudinal distributions of density and wave power, in general the sensitivity depends on wave mode, equatorial pitch-angle, electron energy and L-shell. We determine the effects of the latitudinal distributions of density and wave power on the electron precipitation loss timescale due to combined scattering by VLF chorus, ELF hiss and EMIC waves. Accurate modeling of radiation belt electron dynamics requires observational data on the global distributions of particle number density and wave power.

References

  • Albert, J. M., Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma, J. Geophys. Res., 108(A6), 1249, doi:10.1029/2002JA009792, 2003.

    Article  Google Scholar 

  • Albert, J. M., Simple approximations of quasi-linear diffusion coefficients, J. Geophys. Res., 112, A12202, doi:10.1029/2007JA012551, 2007.

    Article  Google Scholar 

  • Denton, R. E., et al., Distribution of density along magnetospheric field lines, J. Geophys. Res., 111, A04213, doi:10.1029/2005JA011414, 2006.

    Google Scholar 

  • Fraser, B. J. and T. S. Nguyen, Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?, J. Atmos. Sol. Terr. Phys., 63, 1225–1247, 2001.

    Article  Google Scholar 

  • Horne, R. B., et al., Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811, 2005.

    Google Scholar 

  • Lyons, L. R., Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys., 12, 417–432, 1974.

    Article  Google Scholar 

  • Meredith, N. P., R. B. Horne, and R. R. Anderson, Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13165–13178, 2001.

    Article  Google Scholar 

  • Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson, Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, doi:10.1029/2004JA010387, 2004.

    Google Scholar 

  • Miyoshi, Y., et al., Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, J. Geophys. Res., 108(A1), 1004, doi:10.1029/2001JA007542, 2003.

    Article  Google Scholar 

  • Omura, Y. and D. Summers, Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600, 2006.

    Google Scholar 

  • Reinisch, B. W., et al., Plasma density distribution along the magne-tospheric field: RPI observations from IMAGE, Geophys. Res. Lett., 28(24), 4521–4524, 2001.

    Article  Google Scholar 

  • Roth, I., M. Temerin, and M. K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631–638, 1999.

    Article  Google Scholar 

  • Santolik, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin, A microscopic and nanoscopic view of stormtime chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801, doi:10.1029/2003GL018757, 2004.

    Google Scholar 

  • Sheeley, B. W., M. B. Moldwin, H. K. Rassoul, and R. R. Anderson, An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25631–25642, 2001.

    Article  Google Scholar 

  • Shprits, Y. Y., W. Li, and R. M. Thorne, Controlling effect of the pitch angle scattering rates near the edge of the loss cone on electron lifetimes, J. Geophys. Res., 111, A12206, doi:10.1029/2006JA011758, 2006.

    Article  Google Scholar 

  • Spasojevic, M., et al., Global response of the plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 108(A9), 1340, doi:10.1029/2003JA009987, 2003.

    Article  Google Scholar 

  • Summers, D., Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere, J. Geophys. Res., 110, A08213, doi:10.1029/2005JA011159, 2005.

    Google Scholar 

  • Summers, D. and C. Ma, A model for generating relativistic electrons in the Earth’s inner magnetosphere based on gyroresonant wave-particle interactions, J. Geophys. Res., 105, 2625–2640, 2000.

    Article  Google Scholar 

  • Summers, D. and R. M. Thorne, Relativistic electron pitch angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108(A4), 1143, doi:10.1029/2002JA009489, 2003.

    Article  Google Scholar 

  • Summers, D., R. M. Thorne, and F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103, 20487–20500, 1998.

    Article  Google Scholar 

  • Summers, D., et al., Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29(24), 2174, doi:10.1029/2002GL016039, 2002.

    Article  Google Scholar 

  • Summers, D., B. Ni, and N. P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res., 112, A04206, doi:10.1029/2006JA011801, 2007a.

    Google Scholar 

  • Summers, D., B. Ni, and N. P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves, J. Geophys. Res., 112, A04207, doi:10.1029/2006JA011993, 2007b.

    Google Scholar 

  • Thorne, R. M., T. P. O’Brien, Y. Y. Shprits, D. Summers, and R. B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, doi:10.1029/2004JA010882, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Summers.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Summers, D., Ni, B. Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons. Earth Planet Sp 60, 763–771 (2008). https://doi.org/10.1186/BF03352825

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352825

Key words

  • Earth’s radiation belt
  • wave-particle interactions
  • magnetospheric plasma waves
  • electron precipitation