Skip to main content

A conservative and non-oscillatory scheme for Vlasov code simulations

Abstract

A new numerical positive interpolation technique for conservation laws and its application to Vlasov code simulations are presented. In recent Vlasov simulation codes, the Vlasov equation is solved based on the numerical interpolation method because of its simplicity of algorithm and its ease of programming. However, a large number of grid points are needed in both configuration and velocity spaces to suppress numerical diffusion. In this paper we propose a new high-order interpolation scheme for Vlasov simulations. The current scheme is non-oscillatory and conservative and is well-designed for Vlasov simulations. This is compared with the latest interpolation schemes by performing one-dimensional electrostatic Vlasov simulations.

References

  1. Arber, T. D. and R. G. L. Vann, A critical comparison of Eulerian-gridbased Vlasov solvers, J. Comput. Phys., 180, 339–357, 2002.

    Article  Google Scholar 

  2. Besse, N. and E. Sonnendrucker, Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comput. Phys., 191, 341–376, 2003.

    Article  Google Scholar 

  3. Cheng, C. Z. and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 330–360, 1976.

    Article  Google Scholar 

  4. Eliasson, B., Numerical modeling of the two-dimensional Fourier transformed Vlasov-Maxwell system J. Comput. Phys., 190, 501–522, 2003.

    Article  Google Scholar 

  5. Elkina, N. V. and J. Buchner, A new conservative unsplit method for the solution of the Vlasov equation, J. Comput. Phys., 213, 862–875, 2005.

    Article  Google Scholar 

  6. Filbet, F. and E. Sonnendrucker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150, 247–266, 2003.

    Article  Google Scholar 

  7. Filbet, F., E. Sonnendrucker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172, 166–187, 2001.

    Article  Google Scholar 

  8. Gagne, R. R. J. and M. M. Shoucri, A splitting scheme for the numerical solution of a one-dimensional Vlasov equation, J. Comput. Phys., 24, 445–449, 1977.

    Article  Google Scholar 

  9. Godunov, S. K., A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations, Math. Sbornik, 47, 271–306, 1959.

    Google Scholar 

  10. Gutnic, M., M. Haefele, I. Pauna, and E. Sonnendrucker, Vlasov simulations on an adaptive phase-space grid, Comput. Phys. Commun., 164, 214–219, 2004.

    Article  Google Scholar 

  11. Klimas, A. J., Numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution, J. Comput. Phys., 50, 270–306, 1983.

    Article  Google Scholar 

  12. Jiang, G.-S. and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202–228, 1996.

    Article  Google Scholar 

  13. Mangeney, A., F. Califano, C. Cavazzoni, and P. Travnicek, A numerical scheme for the integration of the Vlasov-Maxwell system of equations J. Comput. Phys., 179, 495–538, 2002.

    Article  Google Scholar 

  14. Nakamura, T. and T. Yabe, Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 120, 122–154, 1999.

    Article  Google Scholar 

  15. Pohn, E., M. Shoucri, and G. Kamelander, Eulerian Vlasov codes, Comput. Phys. Commun., 166, 81–93, 2005.

    Article  Google Scholar 

  16. Ryu, C.-M., T. Rhee, T. Umeda, P. H. Yoon, and Y. Omura, Turbulent acceleration of superthermal electrons, Phys. Plasmas, 14, 100701, 2007.

    Article  Google Scholar 

  17. Schmitz, H. and R. Grauer, Darwin-Vlasov simulations of magnetized plasmas, J. Comput. Phys., 214, 738–756, 2006.

    Article  Google Scholar 

  18. Shoucri, M. and R. R. J. Gagne, Numerical solution of the Vlasov equation by transform methods, J. Comput. Phys., 21, 238–242, 1976.

    Article  Google Scholar 

  19. Sonnendrucker, E., J. Roche, P. Bertrand, and A. Ghizzo, The Semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149, 201–220, 1999.

    Article  Google Scholar 

  20. Sonnendrucker, E., F. Filbet, A. Friedman, E. Oudet, and J.-L. Vay, Vlasov simulations of beams with amoving grid, Comput. Phys. Commun., 164, 390–395, 2004.

    Article  Google Scholar 

  21. Tanaka, S., T. Umeda, Y. Matsumoto, T. Miyoshi, and T. Ogino, Implementation of non-oscillatory and conservative scheme into magnetohydrodynamic equations, Earth Planets Space, 2008 (under review).

    Google Scholar 

  22. Umeda, T., Vlasov simulation of amplitude-modulated Langmuir waves, Phys. Plasmas, 13, 092304, 2006.

    Article  Google Scholar 

  23. Umeda, T., Vlasov simulation of Langmuir wave packets, Nonlinear Proc. Geophys., 14, 671–679, 2007.

    Article  Google Scholar 

  24. Umeda, T., Y. Omura, P. H. Yoon, R. Gaelzer, and H. Matsumoto, Harmonic Langmuir waves. III. Vlasov simulation, Phys. Plasmas, 10, 382–391, 2003.

    Article  Google Scholar 

  25. Umeda, T., M. Ashour-Abdalla, and D. Schriver, Comparison of numerical interpolation schemes for one-dimensional electrostatic Vlasov code, J. Plasma Phys., 72, 1057–1060, 2006.

    Article  Google Scholar 

  26. Utsumi, T., T. Kunugi, and J. Koga, A numerical method for solving the one-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 108, 159–179, 1998.

    Article  Google Scholar 

  27. Xiao, F., T. Yabe, and T. Ito, Constructing oscillation preventing scheme for advection equation by rational function, Comput. Phys. Commun., 93, 1–12, 1999.

    Article  Google Scholar 

  28. Yabe, T., F. Xiao, and T. Utsumi, The constrained interpolation profile method for multiphase analysis, J. Comput. Phys., 169, 556–593, 2001.

    Article  Google Scholar 

  29. Yabe, T., H. Mizoe, K. Takizawa, H. Moriki, H.-N. Im, and Y. Ogata, Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme, J. Comput. Phys., 194, 57–77, 2004.

    Article  Google Scholar 

  30. Yamamoto, S. and H. Daiguji, Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations, Comput. Fluids, 22, 259–270, 1993.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takayuki Umeda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Umeda, T. A conservative and non-oscillatory scheme for Vlasov code simulations. Earth Planet Sp 60, 773–779 (2008). https://doi.org/10.1186/BF03352826

Download citation

Key words

  • Vlasov equation
  • hyperbolic equation
  • numerical interpolation
  • conservation laws