Skip to main content

Temporal characteristics of high band-pass filtered teleseismic P-waveforms from large shallow earthquakes

Abstract

We measured time differences between P-wave arrivals and the times at which squared amplitudes of high bandpass (2–4 Hz) filtered P-waves became the largest for large shallow earthquakes that occurred during the period 1995–2007. The time differences were then normalized by twice the centroid time shift for the corresponding earthquakes. We found that most of the seismograms had normalized time differences that congregated at about 50% (corresponding to centroid time shifts). Few normalized time differences were found in the 0–20% range. These results support the use of this time difference to infer the order of the source duration and, thereby, the effectiveness of the duration measurement procedure of the high-frequency energy radiation that we recently developed.

References

  • Chen, Y., J. Huang, S. Ni, and Y. Chen, Slow rupture velocity of the July 17th, 2006 Java earthquake from high frequency analysis, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract S21A-0128, 2006.

    Google Scholar 

  • Frohlich, C. and K. D. Apperson, Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries, Tectonics, 11, 279–296, 1992.

    Article  Google Scholar 

  • Goldstein, P., D. Dodge, M. Firpo, L. Minner, J. E. Tull, Harris, and W. C. Tapley, SAC—Seismic Analysis Code, http://www.iris.edu/manuals/sac/manual.html, 2007.

    Google Scholar 

  • Gusev, A. A., E. M. Guseva, and G. F. Panza, Size and duration of the high-frequency radiator in the source of the 2004 December 26 Sumatra earthquake, Geophys. J. Int., 170, 1119–1128, doi:10.1111/j.1365-246X.2007.03368.x, 2007.

    Article  Google Scholar 

  • Hara, T., Measurement of the duration of high-frequency energy radiation and its application to determination of the magnitudes of large shallow earthquakes, Earth Planets Space, 59, 227–231, 2007a.

    Article  Google Scholar 

  • Hara, T., Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to tsunami earthquakes, Earth Planets Space, 59, 561–565, 2007b.

    Article  Google Scholar 

  • Henry, C., S. Das, and J. H. Woodhouse, The great March 25, 1998, Antarctic Plate earthquake: Moment tensor and rupture history, J. Geophys. Res., 105, 16097–16118, 2000.

    Article  Google Scholar 

  • Lomax, A., Rapid estimation of rupture extent for large earthquakes: Application to the 2004, M9 Sumatra-Andaman mega-thrust, Geophys. Res. Lett., 32, L10314, doi:10.1029/2005GL022437, 2005.

    Article  Google Scholar 

  • Lomax, A. and A. Michelini, Rapid determination of earthquake size for hazard warning, Eos Trans. AGU, 86(21), 202, 2005.

    Article  Google Scholar 

  • Lomax, A., A. Michelini, and A. Piatanesi, An energy-duration procedure for rapid determination of earthquake magnitude and tsunamigenic potential, Geophys. J. Int., 170, doi:10.1111/j.1365-246X.2007.03469.x, 1195–1209, 2007.

    Article  Google Scholar 

  • Ni, S., H. Kanamori, and D. Helmberger, Energy radiation from the Sumatra earthquake, Nature, 434, 582, 2005.

    Article  Google Scholar 

  • Park, J., K. Anderson, R. Aster, R. Butler, T. Lay, and D. Simpson, Global seismographic network records the great Sumatra-Andaman earthquake, Eos Trans. AGU, 86(6), 57, 2005.

    Article  Google Scholar 

  • Ritter, J. R. R., P. M. Mai, G. Stoll, and K. Fuchs, Scattering of teleseismic waves in the lower crust Observations in the Massif Central, France, Phys. Earth Planet. Inter., 104, 127–146, 1997.

    Article  Google Scholar 

  • Shearer, P. M. and P. S. Earle, The global short-period wavefield modelled with a Monte Carlo seismic phonon method, Geophys. J. Int., 158, 1103–1117, 2004.

    Article  Google Scholar 

  • Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79(47), 579, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Hara.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Hara, T. Temporal characteristics of high band-pass filtered teleseismic P-waveforms from large shallow earthquakes. Earth Planet Sp 60, 781–784 (2008). https://doi.org/10.1186/BF03352827

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352827

Key words

  • High-frequency energy radiation
  • shallow earthquake