Skip to main content


A simple model for mantle-driven flow at the top of Earth’s core

Article metrics


We derive a model for the steady fluid flow at the top of Earth’s core driven by thermal coupling with the heterogeneous lower mantle. The model uses a thermal wind balance for the core flow, and assumes a proportionality between the horizontal density gradients at the top of the core and horizontal gradients in seismic shear velocity in the lowermost mantle. It also assumes a proportionality between the core fluid velocity and its radial shear. This last assumption is validated by comparison with numerical models of mantle-driven core flow, including self-sustaining dynamo (supercritical) models and non-magnetic convection (subcritical) models. The numerical dynamo models show that thermal winds with correlated velocity and radial shear dominate the boundary-driven large-scale flow at the top of the core. We then compare the thermal wind flow predicted by mantle heterogeneity with the 150 year time-average flow obtained from inverting the historical geomagnetic secular variation, focusing on the non-zonal components of the flows because of their sensitivity to the boundary heterogeneity. Comparing magnitudes provides an estimate of the ratio of lower mantle seismic anomalies to core density anomalies. Comparing patterns shows that the thermal wind model and the time-average geomagnetic flow have comparable length scales and exhibit some important similarities, including an anticlockwise vortex below the southern Indian and Atlantic Oceans, and another anticlockwise vortex below Asia, suggesting these parts of the non-zonal core flow could be thermally controlled by the mantle. In other regions, however, the two flows do not match well, and some possible reasons for the dissimilarity between the predicted and observed core flow are identified. We propose that better agreement could be obtained using core flows derived from geomagnetic secular variation over longer time periods.


  1. Amit, H. and P. Olson, Helical core flow from geomagnetic secular variation, Phys. Earth Planet. Inter., 147, 1–25, 2004.

  2. Amit, H. and P. Olson, Time-average and time-dependent parts of core flow, Phys. Earth Planet. Inter., 155, 120–139, 2006.

  3. Amit, H., P. Olson, and U. Christensen, Tests of core flow imaging methods with numerical dynamos, Geophys. J. Int., 168, 27–39, 2007.

  4. Aubert, J., Steady zonal flows in spherical shell fluid dynamos, J. Fluid Mech., 542, 53–67, 2005.

  5. Aubert, J., H. Amit, and G. Hulot, Detecting thermal boundary control in surface flows from numerical dynamos, Phys. Earth Planet. Inter., 160, 143–156, 2007.

  6. Bloxham, J., Simple models of fluid flow at the core surface derived from geomagnetic field models, Geophys. J. Int., 99, 173–182, 1989.

  7. Bloxham, J. and D. Gubbins, Thermal core-mantle interactions, Nature, 325, 511–513, 1987.

  8. Bloxham, J. and A. Jackson, Fluid flow near the surface of the Earth’s outer core, Rev. Geophys., 29, 97–120, 1991.

  9. Bouligand, C., G. Hulot, A. Khokhlov, and G. Glatzmaier, Statistical pale-omagnetic field modeling and dynamo numerical simulation, Geophys. J. Int., 161, 603–626, 2005.

  10. Carlut, J. and V. Courtillot, How complex is the time-averaged geomagnetic field over the past 5 Myr?, Geophys. J. Int., 134, 527–544, 1998.

  11. Christensen, U. and P. Olson, Secular variation in numerical geodynamo models with lateral variations of boundary heat flow, Phys. Earth Planet. Inter., 138, 39–54, 2003.

  12. Chulliat, A. and G. Hulot, Local computation of the geostrophic pressure at the top of the core, Phys. Earth Planet. Inter., 117, 309–328, 2000.

  13. Constable, C., C. Johnson, and S. Lund, Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes?, Phil. Trans. Roy. Soc. A, 358, 991–1008, 2000.

  14. Dziewonsky, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

  15. Eymin, C. and G. Hulot, On surface core flows inferred from satellite magnetic data, Phys. Earth Planet. Inter., 152, 200–220, 2005.

  16. Forte, A. M. and J. X. Mitrovica, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature, 410, 1049–1056, 2001.

  17. Gibbons, S. J. and D. Gubbins, Convection in the earths core driven by lateral variations in the core-mantle boundary heat flux, Geophys. J. Int., 142, 631–642, 2000.

  18. Glatzmaier, G., R. Coe, L. Hongre, and P. Roberts, The role of the earth’s mantle in controlling the frequency of geomagnetic reversals, Nature, 401, 885–890, 1999.

  19. Gubbins, D., Thermal core-mantle interactions: theory and observations, in Earth’s Core: dynamics, structure and rotation, edited by V. Dehant, K. Creager, S. Karato, and S. Zatman, 277 pp., AGU Geodynamics Series American Geophysical Union, Washington D.C., 2003.

  20. Gubbins, D. and P. Kelly, Persistent patterns in the geomagnetic field over the past 2.5 Myr, Nature, 365, 829–832, 1993.

  21. Holme, R., Electromagnetic core-mantle coupling—I. Explaining decadal changes in the length of day, Geophys. J. Int., 132, 167–180, 1998.

  22. Holme, R., Large-scale Flow in the Core, in Treatise on Geophysics vol. 8, edited by Olson, P., 358 pp., Elsevier Science, London, 2007.

  23. Hongre, L., G. Hulot, and A. Khokhlov, An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter., 106, 311–335, 1998.

  24. Hulot, G. and J.-L. LeMouël, A statistical approach to the Earth’s main magnetic field, Phys. Earth Planet. Inter., 82, 167–183, 1994.

  25. Hulot, G. and C. Bouligand, Statistical paleomagnetic field modeling and symmetry considerations, Geophys. J. Int., 161, 591–602, 2005.

  26. Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, 2002.

  27. Jackson, A., J. Bloxham, and D. Gubbins, in Dynamics of Earth’s deep interior and Earth rotation, edited by LeMouël, J.-L., D. E. Smylie, and T. Herring, 189 pp., Geophysical Monograph 72 IUGG, Washington D.C., 1993.

  28. Jackson, A., A. R. T. Jonkers, and M. R. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond., A358, 957–990, 2000.

  29. Johnson, C. and C. Constable, The time averaged geomagnetic field as recorded by lava flows over the past 5 Myr, Geophys. J. Int., 112, 489–519, 1995.

  30. Khokhlov, A., G. Hulot, and C. Bouligand, Testing statistical paleomagnetic field models against directional data affected by measurement errors, Geophys. J. Int., 167, 635–648, 2006.

  31. Korte, M., A. Genevey, C. Constable, U. Frank, and E. Schnepp, Continuous geomagnetic field models for the past 7 millenia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, doi:10.1029/2004GC000800, 2005.

  32. Kutzner, C. and U. Christensen, From stable dipolar towards reversing numerical dynamos, Phys. Earth Planet. Inter., 131, 29–45, 2002.

  33. Le Huy, M., J.-L. LeMouël, and A. Pais, Time evolution of the fluid flow at the top of the core. Geomagnetic jerks, Earth Planets Space, 52, 163–173, 2000.

  34. Masters, G., G. Laske, H. Bolton, and A. Dziewonski, in Earth’s deep interior, edited by S. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, 289 pp., AGU monograph 117, Washington D.C., 2000.

  35. McElhinny, M., P. McFadden, and R. Merrill, The time-averaged paleomagnetic field 0–5 ma, J. Geophys. Res., 101, 25,007–25,027, 1996.

  36. Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Post-Perovskite Phase Transition in MgSiO3, Science, 304, 855–858, 2004.

  37. Olson, P. and U. Christensen, The time averaged magnetic field in numerical dynamos with nonuniform boundary heat flow, Geophys. J. Int., 151, 809–823, 2002.

  38. Olson, P., U. R. Christensen, and G. A. Glatzmaier, Numerical modeling of the geodynamo: mechanisms of field generation and equilibration, J. Geophys. Res., 104, 10383–10404, 1999.

  39. Olson, P. and G. A. Glatzmaier, Magnetoconvection and thermal coupling of the Earth’s core and mantle, Phil. Trans. R. Soc. Lond., A354, 1413–1424, 1996.

  40. Olson, P., I. Sumita, and J. Aurnou, Diffusive magnetic images of up-welling patterns in the core, J. Geophys. Res., 107, 2348, 2002.

  41. Pais, A. and G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows, Phys. Earth Planet. Inter., 118, 291–316, 2000.

  42. Pedlosky, J., Geophysical Fluid Dynamics, 710 pp., Springer, New York, 1987.

  43. Poirier, J.-P., Introduction to the Physics of the Earth’s Interior, 312 pp., Cambridge University Press, Cambridge, UK, 2000.

  44. Rau, S., U. Christensen, A. Jackson, and J. Wicht, Core flow inversion tested with numerical dynamo models, Geophys. J. Int., 141, 485–497, 2000.

  45. Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen, Probabilistic Tomographic Maps Chemical Heterogeneities Throughout the Lower Mantle, Science, 306, 853–856, 2004.

  46. Yuen, D. A., O. Cadek, A. Chopelas, and C. Mtyska, Geophysical inferences of thermal-chemical structures in the lower mantle, Geophys. Res. Lett., 20, 899–902, 1993.

Download references

Author information

Correspondence to Hagay Amit.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amit, H., Aubert, J., Hulot, G. et al. A simple model for mantle-driven flow at the top of Earth’s core. Earth Planet Sp 60, 845–854 (2008) doi:10.1186/BF03352836

Download citation

Key words

  • Thermal wind
  • mantle tomography
  • time-average core flow
  • geodynamo