Skip to main content

A simple model for mantle-driven flow at the top of Earth’s core

Abstract

We derive a model for the steady fluid flow at the top of Earth’s core driven by thermal coupling with the heterogeneous lower mantle. The model uses a thermal wind balance for the core flow, and assumes a proportionality between the horizontal density gradients at the top of the core and horizontal gradients in seismic shear velocity in the lowermost mantle. It also assumes a proportionality between the core fluid velocity and its radial shear. This last assumption is validated by comparison with numerical models of mantle-driven core flow, including self-sustaining dynamo (supercritical) models and non-magnetic convection (subcritical) models. The numerical dynamo models show that thermal winds with correlated velocity and radial shear dominate the boundary-driven large-scale flow at the top of the core. We then compare the thermal wind flow predicted by mantle heterogeneity with the 150 year time-average flow obtained from inverting the historical geomagnetic secular variation, focusing on the non-zonal components of the flows because of their sensitivity to the boundary heterogeneity. Comparing magnitudes provides an estimate of the ratio of lower mantle seismic anomalies to core density anomalies. Comparing patterns shows that the thermal wind model and the time-average geomagnetic flow have comparable length scales and exhibit some important similarities, including an anticlockwise vortex below the southern Indian and Atlantic Oceans, and another anticlockwise vortex below Asia, suggesting these parts of the non-zonal core flow could be thermally controlled by the mantle. In other regions, however, the two flows do not match well, and some possible reasons for the dissimilarity between the predicted and observed core flow are identified. We propose that better agreement could be obtained using core flows derived from geomagnetic secular variation over longer time periods.

References

  • Amit, H. and P. Olson, Helical core flow from geomagnetic secular variation, Phys. Earth Planet. Inter., 147, 1–25, 2004.

    Article  Google Scholar 

  • Amit, H. and P. Olson, Time-average and time-dependent parts of core flow, Phys. Earth Planet. Inter., 155, 120–139, 2006.

    Article  Google Scholar 

  • Amit, H., P. Olson, and U. Christensen, Tests of core flow imaging methods with numerical dynamos, Geophys. J. Int., 168, 27–39, 2007.

    Article  Google Scholar 

  • Aubert, J., Steady zonal flows in spherical shell fluid dynamos, J. Fluid Mech., 542, 53–67, 2005.

    Article  Google Scholar 

  • Aubert, J., H. Amit, and G. Hulot, Detecting thermal boundary control in surface flows from numerical dynamos, Phys. Earth Planet. Inter., 160, 143–156, 2007.

    Article  Google Scholar 

  • Bloxham, J., Simple models of fluid flow at the core surface derived from geomagnetic field models, Geophys. J. Int., 99, 173–182, 1989.

    Article  Google Scholar 

  • Bloxham, J. and D. Gubbins, Thermal core-mantle interactions, Nature, 325, 511–513, 1987.

    Article  Google Scholar 

  • Bloxham, J. and A. Jackson, Fluid flow near the surface of the Earth’s outer core, Rev. Geophys., 29, 97–120, 1991.

    Article  Google Scholar 

  • Bouligand, C., G. Hulot, A. Khokhlov, and G. Glatzmaier, Statistical pale-omagnetic field modeling and dynamo numerical simulation, Geophys. J. Int., 161, 603–626, 2005.

    Article  Google Scholar 

  • Carlut, J. and V. Courtillot, How complex is the time-averaged geomagnetic field over the past 5 Myr?, Geophys. J. Int., 134, 527–544, 1998.

    Article  Google Scholar 

  • Christensen, U. and P. Olson, Secular variation in numerical geodynamo models with lateral variations of boundary heat flow, Phys. Earth Planet. Inter., 138, 39–54, 2003.

    Article  Google Scholar 

  • Chulliat, A. and G. Hulot, Local computation of the geostrophic pressure at the top of the core, Phys. Earth Planet. Inter., 117, 309–328, 2000.

    Article  Google Scholar 

  • Constable, C., C. Johnson, and S. Lund, Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes?, Phil. Trans. Roy. Soc. A, 358, 991–1008, 2000.

    Article  Google Scholar 

  • Dziewonsky, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  • Eymin, C. and G. Hulot, On surface core flows inferred from satellite magnetic data, Phys. Earth Planet. Inter., 152, 200–220, 2005.

    Article  Google Scholar 

  • Forte, A. M. and J. X. Mitrovica, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature, 410, 1049–1056, 2001.

    Article  Google Scholar 

  • Gibbons, S. J. and D. Gubbins, Convection in the earths core driven by lateral variations in the core-mantle boundary heat flux, Geophys. J. Int., 142, 631–642, 2000.

    Article  Google Scholar 

  • Glatzmaier, G., R. Coe, L. Hongre, and P. Roberts, The role of the earth’s mantle in controlling the frequency of geomagnetic reversals, Nature, 401, 885–890, 1999.

    Article  Google Scholar 

  • Gubbins, D., Thermal core-mantle interactions: theory and observations, in Earth’s Core: dynamics, structure and rotation, edited by V. Dehant, K. Creager, S. Karato, and S. Zatman, 277 pp., AGU Geodynamics Series American Geophysical Union, Washington D.C., 2003.

    Google Scholar 

  • Gubbins, D. and P. Kelly, Persistent patterns in the geomagnetic field over the past 2.5 Myr, Nature, 365, 829–832, 1993.

    Article  Google Scholar 

  • Holme, R., Electromagnetic core-mantle coupling—I. Explaining decadal changes in the length of day, Geophys. J. Int., 132, 167–180, 1998.

    Article  Google Scholar 

  • Holme, R., Large-scale Flow in the Core, in Treatise on Geophysics vol. 8, edited by Olson, P., 358 pp., Elsevier Science, London, 2007.

    Google Scholar 

  • Hongre, L., G. Hulot, and A. Khokhlov, An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter., 106, 311–335, 1998.

    Article  Google Scholar 

  • Hulot, G. and J.-L. LeMouël, A statistical approach to the Earth’s main magnetic field, Phys. Earth Planet. Inter., 82, 167–183, 1994.

    Article  Google Scholar 

  • Hulot, G. and C. Bouligand, Statistical paleomagnetic field modeling and symmetry considerations, Geophys. J. Int., 161, 591–602, 2005.

    Article  Google Scholar 

  • Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, 2002.

    Article  Google Scholar 

  • Jackson, A., J. Bloxham, and D. Gubbins, in Dynamics of Earth’s deep interior and Earth rotation, edited by LeMouël, J.-L., D. E. Smylie, and T. Herring, 189 pp., Geophysical Monograph 72 IUGG, Washington D.C., 1993.

  • Jackson, A., A. R. T. Jonkers, and M. R. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond., A358, 957–990, 2000.

    Article  Google Scholar 

  • Johnson, C. and C. Constable, The time averaged geomagnetic field as recorded by lava flows over the past 5 Myr, Geophys. J. Int., 112, 489–519, 1995.

    Article  Google Scholar 

  • Khokhlov, A., G. Hulot, and C. Bouligand, Testing statistical paleomagnetic field models against directional data affected by measurement errors, Geophys. J. Int., 167, 635–648, 2006.

    Article  Google Scholar 

  • Korte, M., A. Genevey, C. Constable, U. Frank, and E. Schnepp, Continuous geomagnetic field models for the past 7 millenia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, doi:10.1029/2004GC000800, 2005.

  • Kutzner, C. and U. Christensen, From stable dipolar towards reversing numerical dynamos, Phys. Earth Planet. Inter., 131, 29–45, 2002.

    Article  Google Scholar 

  • Le Huy, M., J.-L. LeMouël, and A. Pais, Time evolution of the fluid flow at the top of the core. Geomagnetic jerks, Earth Planets Space, 52, 163–173, 2000.

    Article  Google Scholar 

  • Masters, G., G. Laske, H. Bolton, and A. Dziewonski, in Earth’s deep interior, edited by S. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, 289 pp., AGU monograph 117, Washington D.C., 2000.

  • McElhinny, M., P. McFadden, and R. Merrill, The time-averaged paleomagnetic field 0–5 ma, J. Geophys. Res., 101, 25,007–25,027, 1996.

    Article  Google Scholar 

  • Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Post-Perovskite Phase Transition in MgSiO3, Science, 304, 855–858, 2004.

    Article  Google Scholar 

  • Olson, P. and U. Christensen, The time averaged magnetic field in numerical dynamos with nonuniform boundary heat flow, Geophys. J. Int., 151, 809–823, 2002.

    Article  Google Scholar 

  • Olson, P., U. R. Christensen, and G. A. Glatzmaier, Numerical modeling of the geodynamo: mechanisms of field generation and equilibration, J. Geophys. Res., 104, 10383–10404, 1999.

    Article  Google Scholar 

  • Olson, P. and G. A. Glatzmaier, Magnetoconvection and thermal coupling of the Earth’s core and mantle, Phil. Trans. R. Soc. Lond., A354, 1413–1424, 1996.

    Article  Google Scholar 

  • Olson, P., I. Sumita, and J. Aurnou, Diffusive magnetic images of up-welling patterns in the core, J. Geophys. Res., 107, 2348, 2002.

    Article  Google Scholar 

  • Pais, A. and G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows, Phys. Earth Planet. Inter., 118, 291–316, 2000.

    Article  Google Scholar 

  • Pedlosky, J., Geophysical Fluid Dynamics, 710 pp., Springer, New York, 1987.

    Book  Google Scholar 

  • Poirier, J.-P., Introduction to the Physics of the Earth’s Interior, 312 pp., Cambridge University Press, Cambridge, UK, 2000.

    Book  Google Scholar 

  • Rau, S., U. Christensen, A. Jackson, and J. Wicht, Core flow inversion tested with numerical dynamo models, Geophys. J. Int., 141, 485–497, 2000.

    Article  Google Scholar 

  • Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen, Probabilistic Tomographic Maps Chemical Heterogeneities Throughout the Lower Mantle, Science, 306, 853–856, 2004.

    Article  Google Scholar 

  • Yuen, D. A., O. Cadek, A. Chopelas, and C. Mtyska, Geophysical inferences of thermal-chemical structures in the lower mantle, Geophys. Res. Lett., 20, 899–902, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagay Amit.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Amit, H., Aubert, J., Hulot, G. et al. A simple model for mantle-driven flow at the top of Earth’s core. Earth Planet Sp 60, 845–854 (2008). https://doi.org/10.1186/BF03352836

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352836

Key words

  • Thermal wind
  • mantle tomography
  • time-average core flow
  • geodynamo