Skip to main content

Paleomagnetic directions of the Gauss-Matuyama polarity transition recorded in drift sediments (IODP Site U1314) in the North Atlantic

Abstract

The geomagnetic field direction during the Gauss-Matuyama (G-M) polarity transition was investigated from a high-accumulation-rate (≥10 cm/kyr) sediment core drilled in the Gardar drift in the North Atlantic at Site U1314 during Expedition 306 of the Integrated Ocean Drilling Program (IODP). A well-defined characteristic remanent magnetization was generally obtained by alternating field demagnetization. The consistency of the results with records from Icelandic lavas confirms that the North Atlantic drift sediments contain a high-fidelity record of the geomagnetic field change. During the G-M transition, the virtual geomagnetic pole (VGP) latitude shows north-south-north-south rebounding, with the three VGP paths falling within different longitudinal bands. Two of the three paths are close to or within the preferred bands in which transitional VGPs are suggested to be longitudinally confined. Three additional loops occur that approach mid-to-low latitudes from the North or South pole regions. In addition, the VGPs show rapid movement (directional jumps) between VGP clusters.

References

  1. Acton, G. D., A. Tessema, M. Jackson, and R. Bilham, The tectonic and geomagnetic significance of paleomagnetic observations from volcanic rocks from Central Afar, Africa, Earth Planet. Sci. Lett., 180, 225–241, 2000.

    Article  Google Scholar 

  2. Burakov, K. S., G. Z. Gurary, A. N. Khramov, G. N. Petrova, G. V. Rassanova, and V. P. Rodinov, Some peculiarities of the virtual pole positions during reversals, J. Geomag. Geoelectr., 28, 295–307, 1976.

    Article  Google Scholar 

  3. Cande, S. C. and D. V. Kent, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 97, 13917–13951, 1995.

    Article  Google Scholar 

  4. Channell, J. E. T. and B. Lehman, The last two geomagnetic polarity reversals recorded in high-deposition-rate sediment drifts, Nature, 389, 712–715, 1997.

    Article  Google Scholar 

  5. Channell, J. E. T. and H. F. Kleiven, Geomagnetic paleointensities and astronomical ages for the Matuyama-Brunhes boundary and the boundaries of the Jaramillo Subchron: paleomagnetic and oxygen isotope records from ODP Site 983, Philos. Trans. R. Soc. Lond. A, 358, 1027–1047, 2000.

    Article  Google Scholar 

  6. Channell, J. E. T. and M. E. Raymo, Paleomagnetic record at ODP Site 980 (Feni Drift, Rockall) for the past 1.2 Myrs, Geochem. Geophys. Geosyst., 4, Art. No. 1033, 2003.

  7. Channell, J. E. T., D. A. Hodell, J. McManus, and B. Lehman, Orbital modulation of the Earth’s magnetic field intensity, Nature, 394, 464–468, 1998.

    Article  Google Scholar 

  8. Channell, J. E. T., A. Mazaud, P. Sullivan, S. Turner, and M. E. Raymo, Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Site 983 and 984 (Iceland Basin), J. Geophys. Res., 107, 2002.

  9. Channell, J. E. T., L. Labs, and M. E. Raymo, The Réunion subchronozone at ODP Site 981 (Feni Drift, North Atlantic), Earth Planet. Sci. Lett., 215, 1–12, 2003.

    Article  Google Scholar 

  10. Channell, J. E. T., J. H. Curtis, and B. P. Flower, The Matuyama-Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments, Geophys. J. Int., 158, 489–505, 2004.

    Article  Google Scholar 

  11. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 267–293, 1977.

    Google Scholar 

  12. Expedition 306 Scientists, Site U1314, in J. E. T. Channell, T. Kanamatsu, T. Sato, R. Stein, C. A. Alvarez Zarikian, M. J. Malone, and the Expedition 303/306 Scientists, Proc. IODP, 306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), 200

    Google Scholar 

  13. Glen, J. M. G., R. S. Coe, and J. C. Liddicoat, A detailed record of paleomagnetic field change from Searles Lake, California. 2. The Gauss/Matuyama polarity reversal, J. Geophys. Res., 104, 12883–12849, 1999.

    Article  Google Scholar 

  14. Goguitchaichvili, A., M. Prévot, J. Thompson, and N. Roberts, An attempt to determine the absolute geomagnetic field intensity in Southwestern Iceland during the Gauss-Matuyama reversal, Phys. Earth Planet. Inter., 115, 53–66, 1999.

    Article  Google Scholar 

  15. Hyodo, M., Possibility of reconstruction of the past geomagnetic field from homogeneous sediments, J. Geomag. Geoelectr., 36, 45–62, 1984.

    Article  Google Scholar 

  16. Kirschvink, J. L., The least-squares lines and plane and analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718, 1980.

    Article  Google Scholar 

  17. Kristjansson, L. and M. Sigurgeirsson, The R3-N3 and R5-N5 paleomagnetic transition zones in SW-Iceland revisited, J. Geomag. Geoelectr., 45, 275–288, 1993.

    Article  Google Scholar 

  18. Kristjansson, L., I. B. Fridleifsson, and N. D. Watkins, Stratigraphy and paleomagnetism of the Esja, Eyrarfjall and Akrafjall mountains, Iceland, J. Geophys., 47, 31–42, 1980.

    Google Scholar 

  19. Liddicoat, J. C., Gauss-Matuyama polarity transition, Philos. Trans. R. Soc. Lond. A, 306, 121–128, 1982.

    Article  Google Scholar 

  20. Mazaud, A., User-friendly software for vector analysis of the magnetization of long sediment cores, Geochem. Geophys. Geosyst., 6, Art. No. Q12006, 2005.

  21. Mazaud, A. and J. E. T. Channell, The top Olduvai polarity transition at ODP Site 983 (Iceland Basin), Earth Planet. Sci. Lett., 166, 1–13, 1999.

    Article  Google Scholar 

  22. Merrill, R. T. and P. L. McFadden, Geomagnetic polarity transition, Rev. Geophys., 37, 201–226, 1999.

    Article  Google Scholar 

  23. Prévot, M., E. A. Mankinen, C. S. Grommé, and R. S. Coe, How the geomagnetic field vector reverses polarity, Nature, 316, 230–234, 1985.

    Article  Google Scholar 

  24. Sigurgeirsson, T., Direction in magnetization in Icelandic basalts, Adv. Phys. (Philos. Mag. Suppl.), 6, 240–246, 1957.

    Google Scholar 

  25. Tanaka, H., M. Kono, and S. Kaneko, Paleosecular variation of direction and intensity from two Pliocene-Pleistocene lava sections in southwestern Iceland, J. Geomag. Geoelectr., 47, 89–102, 1995.

    Article  Google Scholar 

  26. Wilson, R. L., N. D. Watkins, T. Einarsson, T. Sigurgeirsson, S. E. Haggerty, P. J. Smith, P. Dagley, and A. G. McCormack, Paleomagnetism of ten lava sequences from south-western Iceland, Geophys. J. R. Astron. Soc., 29, 459–471, 1972.

    Article  Google Scholar 

  27. Yang, T. S., M. Hyodo, Z. Y. Yang, and Z. M. Sun, A first paleomagnetic and rock magnetic investigation of calcareous nodules from the Chinese Loess Plateau, Earth Planets Space, 57, 29–34, 2005.

    Article  Google Scholar 

  28. Zhu, R. X., B. Guo, Z. L. Ding, Z. T. Guo, A. Kazansky, and G. Matasova, Gauss-Matuyama polarity transition obtained from a loess section at Weinan, north-central China, Chin. J. Geophys., 43, 654–671, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masao Ohno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohno, M., Murakami, F., Komatsu, F. et al. Paleomagnetic directions of the Gauss-Matuyama polarity transition recorded in drift sediments (IODP Site U1314) in the North Atlantic. Earth Planet Sp 60, e13–e16 (2008). https://doi.org/10.1186/BF03352845

Download citation

Key words

  • Geomagnetism
  • polarity transition
  • Integrated Ocean Drilling Program
  • Expedition 306
  • Site U1314