Skip to main content

Magnetic poles and dipole tilt variation over the past decades to millennia

Abstract

Due to the strong dipolar character of the geomagnetic field the shielding effect against cosmic and solar ray particles is weakest in the polar regions. We here present a comprehensive study of the evolution of magnetic and geomagnetic pole locations and the Earth’s magnetic core field in both polar regions over the past few years to millennia. North and south magnetic poles change independently according to the asymmetric complexity of the field in the two hemispheres, and the changes are not correlated to variations of the dipole axis. The recent, strong acceleration of the north magnetic pole motion appears to be linked to a reverse flux patch at the coremantle boundary, and an increasing deceleration of the pole over the next years seems likely. Over the whole studied period of 7000 years two periods of comparatively high velocity of the north magnetic pole are observed at 4500 BC and 1300 BC, based on the presently available data and models. Geographic latitudes and longitudes of magnetic and geomagnetic poles based on the studied geomagnetic field models are available together with animations of the poles and polar field behaviour from our webpage http://www.gfz-potsdam.de/geomagneticfield/poles.

References

  1. Aurnou, J., S. Andreadis, L. Zhu, and P. Olson, Experiments on convection in the Earth’s core tangent cylinder, Earth Planet. Sci. Lett., 212, 119–134, 2003.

    Article  Google Scholar 

  2. Bard, E. and G. Delaygue, Comment on “Are there connections between the Earth’s magnetic field and climate?” by V. Courtillot, Y. Gallet, J.-L. LeMouël, F. Fluteau, A. Genevey, EPSL, 253, 328, 2007, Earth Planet. Sci. Lett., 265, 302–307, 2007.

    Article  Google Scholar 

  3. Barton, C. E., Position of the south magnetic pole, January 1986, Eos Trans. AGU, 68(12), 162, 1987.

    Google Scholar 

  4. Barton, C. E., More on the south magnetic pole, Eos Trans. AGU, 69(4), 50, 1988.

    Article  Google Scholar 

  5. Barton, C., Survey tracks current position of south magnetic pole, Eos Trans. AGU, 83(27), 291, 2002.

    Article  Google Scholar 

  6. Bloxham, J., Time-independent and time-dependent behaviour of highlatitude flux bundles at the core-mantle boundary, Geophys. Res. Lett., 29, 1854, doi:10.1029/2001GL014543, 2002.

    Article  Google Scholar 

  7. Bloxham, J. and D. Gubbins, The secular variation of Earth’s magnetic field, Nature, 317, 777–781, 1985.

    Article  Google Scholar 

  8. Bloxham, J. and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19,537–19,563, 1992.

    Article  Google Scholar 

  9. Cardin, P. and P. Olson, Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core, Phys. Earth Planet. Inter., 82, 235–259, 1994.

    Article  Google Scholar 

  10. Carrigan, C. R. and F. H. Busse, An experimental and theoretical investigation of the onset of convection in rotating spherical shells, J. Fluid Mech., 126, 287–305, 1983.

    Article  Google Scholar 

  11. Constable, C. and M. Korte, Is Earth’s magnetic field reversing?, Earth Planet. Sci. Lett., 246, 1–6, 2006.

    Article  Google Scholar 

  12. Courtillot, V., Y. Gallet, J.-L. LeMouël, F. Fluteau, and A. Genevey, Are there connections between the Earth’s magnetic field and climate, Earth Planet. Sci. Lett., 253, 328–339, 2007.

    Article  Google Scholar 

  13. Dawson, E. and L. R. Newitt, The magnetic poles of the Earth, J. Geomag. Geoelectr., 34(4), 225–240, 1982.

    Article  Google Scholar 

  14. Dormy, E., A. M. Soward, C. A. Jones, D. Jault, and P. Cardin, The onset of thermal convection in rotating spherical shells, J. Fluid Mech., 501, 43–70, 2004.

    Article  Google Scholar 

  15. Gubbins, D., Mechanism for geomagnetic polarity reversals, Nature, 326, 167–169, 1987.

    Article  Google Scholar 

  16. Gubbins, D. and J. Bloxham, Morphology of the geomagnetic field and implications for the geodynamo, Nature, 325, 1521–1524, 1987.

    Google Scholar 

  17. Gubbins, D., A. L. Jones, and C. C. Finlay, Fall in Earth’s magnetic field is erratic, Science, 312, 900–902, 2006.

    Article  Google Scholar 

  18. Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, 2002.

    Article  Google Scholar 

  19. Jackson, A., A. R. T. Jonkers, and M. R. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond. A, 358, 957–990, 2000.

    Article  Google Scholar 

  20. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, Q02H16, doi:10.1029/2004GC000801, 2005a.

  21. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millennia: A new global data compilation, Geochem. Geophys. Geosyst., 6, Q02H15, doi:10.102/2004GC000800, 2005b.

  22. Korte, M. and C. G. Constable, Spatial and temporal resolution of millennial scale field models, Adv. Space Res., 41, 57–69, 2008.

    Article  Google Scholar 

  23. Langel, R. A., The main field, in Geomagnetism, 1, edited by J. A. Jacobs, 249–512, Academic Press, Orlando, 1987.

  24. Mandea, M. and E. Dormy, Asymmetric behaviour of magnetic dip poles, Earth Planets Space, 55, 153–157, 2003.

    Article  Google Scholar 

  25. Merrill, R. T. and M.W. McElhinny, The Earth’s magnetic field: Its history, origin and planetary perspective, 401 pp, Academic Press, London, 1983.

    Google Scholar 

  26. Newitt, L. R. and C. E. Barton, The position of the north magnetic dip pole in 1994, J. Geomag. Geoelectr., 48, 221–232, 1996.

    Article  Google Scholar 

  27. Newitt, L. R., M. Mandea, L. A. McKee, and J.-J. Orgeval, Recent acceleration of the north magnetic pole linked to magnetic jerks, Eos Trans. AGU, 83(35), 381–389, 2002.

    Article  Google Scholar 

  28. Ohno, M. and Y. Hamano, Geomagnetic poles over the past 10,000 years, Geophys. Res. Lett., 19, 1715–1718, 1992.

    Article  Google Scholar 

  29. Olsen, N. and M. Mandea, Will the magnetic north pole move to siberia?, Eos Trans. AGU, 88(29), 293, 2007.

    Article  Google Scholar 

  30. Olsen, N., H. Lühr, T. J. Sabaka, M. Mandea, M. Rother, L. Toffner- Clausen, and S. Choi, CHAOS—A model of the Earth’s magnetic field derived from CHAMP, orsted, and SAC-C magnetic satellite data, Geophys. J. Int., 166(1), 67–75, 2006.

    Article  Google Scholar 

  31. Olson, P., The disappearing dipole, Nature, 416, 591–594, 2002.

    Article  Google Scholar 

  32. Olson, P. and J. Aurnou, A polar vortex in the Earth’s core, Nature, 402, 170–173, 1999.

    Article  Google Scholar 

  33. Pais, A. and G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows, Phys. Earth Planet. Inter., 118, 291–316, 2000.

    Article  Google Scholar 

  34. Riedel, K. S. and A. Sidorenko, Minimum bias multiple taper spectral estimation, IEEE Trans. Signal Process., 43, 188–195, 1995.

    Article  Google Scholar 

  35. Sabaka, T. J., N. Olsen, and M. E. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data, Geophys. J. Int., 159, 521–547, 2004.

    Article  Google Scholar 

  36. Wessel, P. and W. H. F. Smith, New, improved version of the generic mapping tools released, Eos Trans. AGU, 79, 579, 1998.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Korte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korte, M., Mandea, M. Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planet Sp 60, 937–948 (2008). https://doi.org/10.1186/BF03352849

Download citation

Key words

  • Geomagnetic field
  • magnetic poles
  • dipole axis