Skip to main content

Interaction of Alfven waves with a turbulent layer

Abstract

We consider the interaction of Alfven waves with a resistive turbulent layer with anomalous conductivity. High-frequency turbulence causes the occurrence of both field-aligned and transverse resistivity. The correct dispersion relationship for Alfven waves in a turbulent medium with anisotropic conductivities has been derived. Alfven waves may partially reflect from a resistive layer, be absorbed in it, or be transmitted through it. When field-aligned resistivity dominates, the relative effectiveness of these processes critically depends on the wave transverse scale. For a thin layer as compared with the wave field-aligned length, the characteristic parameter that controls the effectiveness of the wave interaction with a layer is the resistive Alfven scale λA, determined by the field-aligned resistance and Alfven velocity above the layer. Comparison of energy losses estimated from analytical relationships for a “thin” layer and from numerical calculations for a finite width layer shows that the thin layer approximation provides a reasonable estimate over a wide range of wave scales, not only very small. Estimation of the effective damping scale of the Pc1 waves in a turbulent cusp shows that the cusp proper cannot be a conduit of Pc1 wave energy from the magnetosheath to the ground. The “thin” layer model has been applied to the interpretation of the results of early studies of transient ULF wave (Pi2 pulsations) damping during substorm onset, which showed that the damping rate increased for accompanying magnetic bays stronger than 100 nT. Our estimates confirm that this additional damping can be caused by the occurrence of anomalous transverse resistance when magnetospheric current exceeds the threshold necessary for the excitation of highfrequency plasma turbulence.

References

  1. Barsukov, V. M. and M. I. Pudovkin, Field-aligned conductivity and pulsation parameters, Geomagn. Aeronomy, 10, 569–570, 1970.

    Google Scholar 

  2. Dyrud, L. P., M. J. Engebretson, J. L. Posch, W. J. Hughes, H. Fukunishi, R. L. Arnoldy, P. T. Newell, and R. B. Horne, Ground observations and possible source regions of two types of Pc1–2 micropulsations at very high latitudes, J. Geophys. Res., 102, 27011–27028, 1997.

    Article  Google Scholar 

  3. Engebretson, M. J., T. G. Onsager, D. E. Rowland, R. E. Denton, J. L. Posch, C. T. Russell, P. J. Chi, R. L. Arnoldy, B. J. Anderson, and H. Fukunishi, On the source of Pc1–2 waves in the plasma mantle, J. Geophys. Res., 110, A06201, doi:10.1029/2004JA010515, 2005.

  4. Erlandson, R. E., L. J. Zanetti, and T. A. Potemra, Observations of electromagnetic ion cyclotron waves and hot plasma in the polar cusp, Geophys. Res. Lett., 15, 421–424, 1988.

    Article  Google Scholar 

  5. Fedorov, E., V. Pilipenko, and M. J. Engebretson, ULF wave damping in the auroral acceleration region, J. Geophys. Res., 106, 6203–6212, 2001.

    Article  Google Scholar 

  6. Fedorov, E., V. Pilipenko, and V. V. Vovchenko, Interaction of Alfven waves with a resistive layer, Geomagn. Aeronomy, 47, 606–615, 2007.

    Article  Google Scholar 

  7. Fejer, B. G. and M. C. Kelley, Ionospheric irregularities, Rev. Geophys. Space Phys., 18, 401, 1980.

    Article  Google Scholar 

  8. Fredricks, R. W., F. L. Scarf, and C. T. Russell, Field-aligned currents, plasma waves, and anomalous resistivity in the disturbed polar cusp, J. Geophys. Res., 78, 2133–2141, 1973.

    Article  Google Scholar 

  9. Galeev, A. A. and R. Z. Sagdeev, Nonlinear plasma theory, in Reviews of Plasma Physics, edited by M. A. Leontovich, N7, 3–145, 1973.

    Google Scholar 

  10. Gudkova, V. A., L. M. Zeleny, and V. A. Liperovsky, About dynamics of field-aligned currents in the magnetosphere, Geomagn. Aeronomy, 13, 318–324, 1973.

    Google Scholar 

  11. Gudkova, V. A., V. M. Barsukov, L. M. Zeleny, A. V. Volosevich, G. A. Loginov, and V. A. Liperovsky, Turbulence in the magnetospheric plasma and damping of Pi2 variations, Geomagn. Aeronomy, 14, 764–766, 1974.

    Google Scholar 

  12. Hudson, M. K., R. L. Lysak, and F. S. Moser, Magnetic field-aligned potential drops due to electrostatic ion-cyclotron turbulence, Geophys. Res. Lett., 5, 143–146, 1978.

    Article  Google Scholar 

  13. Ionson, J. A., Anomalous resistivity from electrostatic ion cyclotron turbulence, Phys. Lett., 58A, 105–107, 1976.

    Article  Google Scholar 

  14. Keiling, A., J. R. Wygant, C. Cattell, W. Peria, G. Parks, M. Temerin, F. S. Mozer, C. T. Russell, and C. A. Kletzing, Correlation of Alfven wave Poynting flux in the plasma sheet at 4–7RE with ionospheric electron energy flux, J. Geophys. Res., 107, 1132, doi:10.1029/2001JA900140, 2002.

    Article  Google Scholar 

  15. Kindel, J. M. and C. F. Kennel, Topside current instabilities, J. Geophys. Res., 76, 3055–3078, 1971.

    Article  Google Scholar 

  16. Le, G., X. Blanco-Cano, C. T. Russell, X.-W. Zhou, F. Mozer, K. J. Trattner, S. A. Fuselier, and B. J. Anderson, Electromagnetic ion cyclotron waves in the high altitude cusp: Polar observations, J. Geophys. Res., 106, 19067–19080, 2001.

    Article  Google Scholar 

  17. Liperovsky, V. A. and S. A. Martjanov, About damping of hydromagnetic waves in a turbulent plasma, Geomagn. Aeronomy, 13, 311–317, 1973.

    Google Scholar 

  18. Liperovsky, V. A. and M. I. Pudovkin, Anomalous resistivity and double layers in magnetospheric plasma, Moscow, Nauka, p. 181, 1983 (in Russian).

    Google Scholar 

  19. Lotko, W., B. U. Ö. Sonnerup, and R. L. Lysak, Nonsteady boundary layer flow including ionospheric drag and parallel electric fields, J. Geophys. Res., 92, 8635, 1987.

    Article  Google Scholar 

  20. Lyons, L. R., Generation of large-scale regions of auroral currents, electric potentials, and precipitation by the divergence of the convection electric field, J. Geophys. Res., 85, 17–24, 1980.

    Article  Google Scholar 

  21. Lysak, L. R. and C. W. Carlson, Effect of microscopic turbulence on magnetosphere-ionosphere coupling, Geophys. Res. Lett., 8, 269–272, 1981.

    Article  Google Scholar 

  22. Lysak, R. L. and C. T. Dum, Dynamics of magnetosphere-ionosphere coupling including turbulent transport, J. Geophys. Res., 88, 365–380, 1983.

    Article  Google Scholar 

  23. Lysak, R. L. and A. Yoshikawa, Resonant cavities and waveguides in the ionosphere and atmosphere, in Magnetospheric ULF Waves: Synthesis and New Directions, Geophys. Monogr. Ser., edited by K. Takahashi, P. J. Chi, R. E. Denton, and R. L. Lysak, 169, 289–306, AGU, Washington, D.C., 2006.

    Article  Google Scholar 

  24. Maltsev, Yu. P., Boundary conditions for Alfven waves on the ionosphere, Geomagn. Aeronomy, 17, 1008–1011, 1977.

    Google Scholar 

  25. Mazur, N., E. Fedorov, V. Pilipenko, and A. Leonovich, Interaction of Alfven front with the plasma anomalous resistance layer, J. Plasma Phys., 73, 241–256, 2007.

    Article  Google Scholar 

  26. Pilipenko, V., S. Shalimov, E. Fedorov, M. Engebretson, and W. Hughes, Coupling between field-aligned current impulses and Pi1 noise bursts, J. Geophys. Res., 104, 17419–17430, 1999.

    Article  Google Scholar 

  27. Pokhotelov, O. A., V. Khruschev, M. Parrot, S. Senchenkov, and V. P. Pavlenko, Ionospheric Alfven resonator revisited: Feedback instability, J. Geophys. Res., 106, 25813–25824, 2001.

    Article  Google Scholar 

  28. Rankin, R., J. C. Samson, and V. T. Tikhonchuk, Discrete auroral arcs and nonlinear dispersive field line resonances, Geophys. Res. Lett., 26, 663–666, 1999.

    Article  Google Scholar 

  29. Senatorov, V. A., Solution of the wave Alfven equation with account for finite conductivity and viscosity, Geomagn. Aeronomy, 36, 164–165, 1996.

    Google Scholar 

  30. Shalimov, S. L. and V. A. Liperovsky, About saturation of turbulent energy density in field-aligned currents, Space Res., 26, 247–255, 1988.

    Google Scholar 

  31. Scholer, M., On the motion of artificial ion clouds in the magnetosphere, Planet. Space Sci., 18, 977, 1970.

    Article  Google Scholar 

  32. Streltsov, A. V. and W. Lotko, Reflection and absorption of Alfvenic power in the low-altitude magnetosphere, J. Geophys. Res., 108, 8016, doi:10.1029/2002JA009425, 2003.

    Article  Google Scholar 

  33. Swift, D. W., Mechanism for auroral precipitation: A review, Rev. Geophys. Space Phys., 19, 185–212, 1981.

    Article  Google Scholar 

  34. Tikhonchuk, V. T. and V. Y. Bychenkov, Effect of anomalous resistivity on MHD wave damping, J. Geophys. Res., 100, 9535–9538, 1995.

    Article  Google Scholar 

  35. Trakhtengertz, V. Yu. and A. Ya. Feldstein, About dissipation of Alfven waves in the layer with anomalous resistance, Geomagn. Aeronomy, 25, 334–336, 1985.

    Google Scholar 

  36. Vogt, J., Alfven wave coupling in the auroral current circuit, Surv. Geophys., 23, 335–377, 2002.

    Article  Google Scholar 

  37. Vogt, J. and G. Haerendel, Reflection and transmission of Alfven waves at the auroral acceleration region, Geophys. Res. Lett., 25, 277, 1998.

    Article  Google Scholar 

  38. Yagova, N., V. Pilipenko, E. Fedorov, M. Vellante, and K. Yumoto, Influence of ionospheric conductivity on mid-latitude Pc3-4 pulsations, Earth Planets Space, 51, 129–138, 1999.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Pilipenko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pilipenko, V., Fedorov, E. & Engebretson, M.J. Interaction of Alfven waves with a turbulent layer. Earth Planet Sp 60, 949–960 (2008). https://doi.org/10.1186/BF03352850

Download citation

Key words

  • Alfven waves
  • ULF pulsations
  • anomalous resistivity
  • plasma turbulence