Skip to main content

An experiment of predicting Total Electron Content (TEC) by fuzzy inference systems


The Total Electron Content (TEC) is predicted by fuzzy inference systems for various station-satellite pairs. GPS data from the GRAZ, HFLK, LINZ, MOPI and UZHL permanent stations are processed in order to obtain the vertical total electron content (VTEC) using differenced carrier-smoothed code observations. The quality of the VTEC prediction was studied on 9 and 11 September 2005 (DOY 252 and 254). The predictions were computed for 5, 10 and 15 min intervals. The mean accuracies of predictions are about 0.1, 0.2 and 0.3 TECU for these time intervals. More than 98% of the VTEC is successfully recovered with the proposed prediction method.


  1. Akyilmaz, O. and H. Kutterer, Prediction of earth rotation parameters by fuzzy inference systems, J. Geod., 78, 82–93, 2004.

    Article  Google Scholar 

  2. Ciraolo, L., F. Azpilicueta, C. Brunini, A. Meza, and S. M. Radicella, Calibration errors on experimental slant total electron content (TEC) determined with GPS, J. Geod., 81, 111–120, 2007.

    Article  Google Scholar 

  3. Dach, R., U. Hugentobler, P. Fridez, and M. Meindl, User manual of the Bernese GPS software version 5.0, Astronomical Institute, University of Bern, 2007.

    Google Scholar 

  4. DRAO (Dominion Radio Astrophysical Observatory in Pentiction),, 2008.

  5. Estey, L. H. and C. M. Meertens, TEQC: The multi-purpose toolkit for GPS/GLONASS data, GPS Solutions, 3(1), 42–49, 1999.

    Article  Google Scholar 

  6. Jang, J. S. R., ANFIS: adaptive-network-based fuzzy inference systems, IEEE Trans. Syst. Man. Cybernet, 23, 665–685, 1993.

    Article  Google Scholar 

  7. Liu, Z. and Y. Gao, Ionospheric TEC predictions over a local area GPS reference network, GPS Solutions, 8, 23–29, 2004.

    Article  Google Scholar 

  8. Liu, R., Z. Xu, J. Wu, S. Liu, B. Zang, and G. Wang, Preliminary studies on ionospheric forecasting in China and its surrounding area, J. Atmos. Solar-Terr. Phys., 67, 1129–1136, 2005.

    Article  Google Scholar 

  9. NGDC (National Geophysical Data Center),, 2008.

  10. Oyeyemi, E. O., L. A. Mckinnell, and A. W. V. Poole, Near-real time foF2 predictions using neural networks, J. Atmos. Solar-Terr. Phys., 68, 1807–1818, 2006.

    Article  Google Scholar 

  11. Popoola, A., S. Ahmad, and K. Ahmad, A Fuzzy-Wavelet method for analyzing non-stationary time series, in Proceedings of the 5th Int. Conference on Recent Advances in Soft Computing (RASC 2004), pp. 231–236, December 16–18, Notthingham, UK, 2004.

    Google Scholar 

  12. Rideout, W. and A. Coster, Automated GPS processing for global total electron content, GPS Solutions, 10, 219–228, 2006.

    Article  Google Scholar 

  13. Sardon, E. and N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?, Radio Sci., 32(5), 1899–1910, 1997.

    Article  Google Scholar 

  14. Takagi, T. and M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst. Man. Cybernet, 15, 116–132, 1985.

    Article  Google Scholar 

  15. Wild, U., Ionosphere and geodetic satellite systems: Permanent GPS tracking data for modelling and monitoring, Achtundvierzigster Band, 48, 1994.

Download references

Author information



Corresponding author

Correspondence to N. Arslan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akyilmaz, O., Arslan, N. An experiment of predicting Total Electron Content (TEC) by fuzzy inference systems. Earth Planet Sp 60, 967–972 (2008).

Download citation

Key words

  • GPS
  • ionosphere
  • VTEC
  • prediction