Skip to main content

Summer-time nocturnal wave characteristics in mesospheric OH and O2 airglow emissions

Abstract

The mesospheric temperature mapper (MTM) measurements on mesospheric OH (6, 2) and O2 (0, 1) band emissions from Maui, Hawaii during July, 2002 show significant day-to-day variability. The nocturnal variability reveals prominent wave signatures with a periodicity ranging from 6 to 13 h. For better characterization of the nocturnal wave in the data, a Krassovsky’s η (|η|eiφ) analysis was carried out. Deduced Krassovsky parameters show significant variability, with ranges of |η| 1.7–3.9 for the OH data and 4.3–13 for the O2 data. The phase values of Krassovsky parameters exhibit larger variability, with variations from approximately −91° to +23° for the OH data and −45° to −10° for the O2 data. Comparison of these values with existing observations and models show large deviations from model values and relatively better agreements with the observed values reported by other investigators. The deduced vertical wavelength from |η| and φ indicates that our data is mostly dominated by upward propagating waves with occasional high values ≥100 km, implying possible evanescent waves.

References

  1. Drob, D. P., Ground-based optical detection of atmospheric waves in the upper mesosphere and lower thermosphere, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, 1996.

    Google Scholar 

  2. Fritts, D. C. and M. J. Alexander, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1003, doi: 10.1029/2001RG000106, 2003.

    Article  Google Scholar 

  3. Gardner, C. S. and M. J. Taylor, Observational limits for lidar, radar, and airglow imager measurements of gravity wave parameters, J. Geophys. Res., 103, 6427–6437, 1998.

    Article  Google Scholar 

  4. Hickey, M. P., G. Schubert, and R. L. Walterscheid, Gravity wave driven fluctuations in the O2 atmospheric (0–1) nightglow from an extended, dissipative emission region, J. Geophys. Res., 98, 13,717–13,729, 1993.

    Article  Google Scholar 

  5. Hines, C. O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441–1481, 1960.

    Article  Google Scholar 

  6. Hines, C. O., A fundamental theorem of airglow fluctuations induced by gravity waves, J. Atmos. Sol. Terr. Phys., 59, 319–326, 1997.

    Article  Google Scholar 

  7. Hines, C. O. and D.W. Tarasick, On the detection and utilization of gravity waves in airglow studies, Planet. Space Sci., 35, 851–866, 1987.

    Article  Google Scholar 

  8. Hines, C. O. and D. W. Tarasick, Layer truncation and the Eulerian/ Lagrangian duality in the theory of airglow fluctuations induced by gravity waves, J. Atmos. Sol. Terr. Phys., 59, 327–334, 1997.

    Article  Google Scholar 

  9. Krassovsky, V. I., Infrasonic variation of OH emission in the upper atmosphere, Ann. Geophys., 28, 739–746, 1972.

    Google Scholar 

  10. Lopez-Gonzalez, M. J. et al., Tidal variations of O2 Atmospheric and OH(6–2) airglow and temperature at mid-latitude from SATI observations, Ann. Geophys., 23, 3579–3590, 2005.

    Article  Google Scholar 

  11. Makhlouf, U. B., R. H. Picard, and J. R. Winick, Photochemical-dynamical modeling of the measured response of airglow to gravity waves, 1: basic model for OH airglow, J. Geophys. Res., 100, 11,289–11,311, 1995.

    Article  Google Scholar 

  12. Murthy, B. V. K., Middle atmosphere-upper atmosphere coupling, Proc. Ind. Natl. Sci. Acad., 64, A, 3, 303–313, 1998.

    Google Scholar 

  13. Offermann, D., V. Friedrich, P. Ross, and U. von Zahn, Neutral gas composition measurements between 80 and 120 km, Planet. Space Sci., 29, 747–764, 1981.

    Article  Google Scholar 

  14. Oznovich, I., D. J. McEwen, and G. G. Sivjee, Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere, Planet. Space Sci., 43, 1121–1130, 1995.

    Article  Google Scholar 

  15. Oznovich, I., R. L. Walterscheid, G. G. Sivjee, and D. J. McEwen, On Krassovsky’s ratio for ter-diurnal hydroxyl oscillations in the winter polar mesopause, Planet. Space Sci., 45(3), 385–394, 1997.

    Article  Google Scholar 

  16. Pancheva, D. V., P. J. Mukhtarov, M. G. Shepherd, N. J. Mitchell, D. C. Fritts, D. M. Riggin, S. J. Franke, P. P. Batista, M. A. Abdu, I. S. Batista, B. R. Clemesha, and T. Kikuchi, Two-day wave coupling of the lowlatitude atmosphere-ionosphere system, J. Geophys. Res., 111, A07313, doi:10.1029/2005JA011562, 2006.

  17. Reisin, E. R. and J. Scheer, Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2 (0–1) Atmospheric and OH (6–2) airglow at lower midlatitudes, J. Geophys. Res., 101, 21,223–21,232, 1996.

    Article  Google Scholar 

  18. Schubert, G., R. L. Walterscheid, and M. P. Hickey, Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region, J. Geophys. Res., 96(A8), 13,869–13,880, 1991.

    Article  Google Scholar 

  19. Suzuki, S., K. Shiokawa, Y. Otsuka, T. Ogawa, K. Nakamura, and T. Nakamura, A concentric gravity wave structure in the mesospheric airglow images, J. Geophys. Res., 112, D02102, doi:10.1029/2005JD006558, 2007.

  20. Swenson, G. R. and C. S. Gardner, Analytical model for the response of the mesosphere OH* and Na layers to atmospheric gravity waves, J. Geophys. Res., 103, 6271–6294, 1998.

    Article  Google Scholar 

  21. Takahashi, H., Y. Sahai, P. P. Batista, and B. R. Clemesha, Atmospheric gravity wave effect on the airglow O2 (0–1) and OH (9–4) band intensity and temperature variations observed from a low latitude station, Adv. Space Res., 12(10), 131–134, 1992.

    Article  Google Scholar 

  22. Takahashi, H., P. P. Batista, R. A. Buriti, D. Gobbi, T. Nakamura, T. Tsuda, and S. Fukao, Response of the airglow OH emission, temperature and mesopause wind to the atmospheric wave propagation over Shigaraki, Japan, Earth Planets Space, 51, 863–875, 1999.

    Article  Google Scholar 

  23. Takahashi, H., R. A. Buriti, D. Gobbi, and P. P. Batista, Equatorial planetary wave signatures observed in mesospheric airglow emissions, J. Atmos. Solar. Terr. Phys., 64, 1263–1272, 2002.

    Article  Google Scholar 

  24. Taori, A. and M. Taylor, Characteristics of wave induced oscillations in mesospheric O2 emission intensity and temperatures, Geophys. Res. Lett., 33, L01813, doi:10.1029/2005GL024442, 2006.

  25. Taori, A., M. J. Taylor, and S. Franke, Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20°N), J. Geophys. Res., 110, D09S06, doi:10.1029/2004JD004564, 2005.

  26. Taori, A., A. Guharay, and M. J. Taylor, On the use of simultaneous measurements of OH and O2 emissions to investigate wave growth and dissipation, Ann. Geophys., 25, 639–643, 2007.

    Article  Google Scholar 

  27. Tarasick, D. W. and C. O. Hines, The observable effects of gravity waves in airglow emission, Planet. Space Sci., 38, 1105–1119, 1990.

    Article  Google Scholar 

  28. Tarasick, D. W. and G. G. Shepherd, Effects of gravity waves on complex airglow chemistries: 1. O2 (b1g+) emission, J. Geophys. Res., 97, 3185–3193, 1992a.

    Article  Google Scholar 

  29. Tarasick, D. W. and G. G. Shepherd, Effects of gravity waves on complex airglow chemistries: 2. OH emission, J. Geophys. Res., 97, 3195–3208, 1992b.

    Article  Google Scholar 

  30. Taylor, M. J., L. C. Gardner, and W. R. Pendleton, Jr., Long-period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at mid-latitudes, Adv. Space Res., 27(6–7), 1171–1179, 2001.

    Article  Google Scholar 

  31. Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574, 2005.

  32. Viereck, R. A. and C. S. Deehr, On the interaction between gravity waves and the OH Meinel (6–2) and O2 Atmospheric (0–1) bands in the polar night airglow, J. Geophys. Res., 94, 5397–5404, 1989.

    Article  Google Scholar 

  33. Vincent, R. A. and D. Lesicar, Dynamics of the equatorial mesosphere: First results with a new generation partial reflection radar, Geophys. Res. Lett., 18, 825–828, 1991.

    Article  Google Scholar 

  34. Walterscheid, R. L. and G. Schubert, Dynamical-chemical model of fluctuations in the OH airglow driven by migrating tides, stationary tides, and planetary waves, J. Geophys. Res., 100, 17,443–17,449, 1995.

    Article  Google Scholar 

  35. Walterscheid, R. L., G. Schubert, and M. P. Hickey, Comparison of theories for gravity wave fluctuations in airglow emissions, J. Geophys. Res., 99, 3935–3944, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Taori.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guharay, A., Taori, A. & Taylor, M. Summer-time nocturnal wave characteristics in mesospheric OH and O2 airglow emissions. Earth Planet Sp 60, 973–979 (2008). https://doi.org/10.1186/BF03352853

Download citation

Key words

  • Mesosphere
  • nightglow
  • wave and tides
  • chemistry