Skip to main content

Scaling of characterized slip models for plate-boundary earthquakes

Abstract

We characterized source rupture models with heterogeneous slip of plate-boundary earthquakes in the Japan region. The slip models are inferred from strong-motion, teleseismic, geodetic, or tsunami records. For the identification of asperities in the slip models, we found that the area of subfaults retrieved with slips of >1.5 times the total average slip provides a size approximately equivalent to the characterized asperity by Somerville et al. (1999). We then carried out regression analyses of the size and slip for the rupture area and asperity. The obtained scaling relationship to the seismic moment indicates that rupture area S, average slip D, and combined area of asperities Sa are 1.4, 0.4, and 1.2 times larger, respectively, than those of crustal earthquakes. In contrast, the ratios of the size and slip between the asperities and rupture area (Sa/S and Da/D) are the same for plateboundary earthquakes as for crustal earthquakes. The above analyses indicate that plate-boundary and crustal earthquakes share similar source characteristics.

References

  1. Baba, T., Y. Tanioka, P. R. Cummins, and K. Uhira, The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model, Phys. Earth Planet. Inter., 132, 59–73, 2002.

    Article  Google Scholar 

  2. Beresnev, I. and G. Atkinson, Subevent structure of large earthquakes—A ground-motion perspective, Geophys. Res. Lett., 28, 53–56, 2001a.

    Google Scholar 

  3. Beresnev, I. and G. Atkinson, Correction to “Subevent structure of large earthquakes—A ground-motion perspective”, Geophys. Res. Lett., 28, 4663, 2001b.

    Article  Google Scholar 

  4. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc., A241, 376–396, 1957.

    Article  Google Scholar 

  5. Fukuyama, E. and K. Irikura, Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method, Bull. Seismol. Soc. Am., 76, 1623–1640, 1986.

    Google Scholar 

  6. Honda, R., S. Aoi, N. Morikawa, H. Sekiguchi, T. Kunugi, and H. Fujiwara, Ground motion and rupture process of the 2003 Tokachi-oki earthquake obtained from strong motion data of K-NET and KiK-net, Earth Planets Space, 56, 317–322, 2004.

    Article  Google Scholar 

  7. Ichinose, G. A., H. K. Thio, P. G. Somerville, T. Sato, and T. Ishii, Rupture process of the 1944 Tonankai earthquake (Ms 8.1) from the inversion of teleseismic and regional seismograms, J. Geophys. Res., 108(B10), 2497, doi:10.1029/2003JB002393, 2003.

    Article  Google Scholar 

  8. Kanamori, H. and D. L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65, 1073–1095, 1975.

    Google Scholar 

  9. Kato, T. and M. Ando, Source mechanism of the 1944 Tonankai and 1946 Nankaido earthquakes: Spatial heterogeneity of rise times, Geophys. Res. Lett., 24, 2055–2058, 1997.

    Article  Google Scholar 

  10. Kikuchi, M., M. Nakamura, and K. Yoshikawa, Source rupture process of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms, Earth Planets Space, 55, 159–172, 2003.

    Article  Google Scholar 

  11. Kobayashi, R. and K. Koketsu, Source process of the 1923 Kanto earthquake inferred from historical geodetic, teleseismic, and strong motion data, Earth Planets Space, 57, 261–270, 2005.

    Article  Google Scholar 

  12. Koketsu, K., K. Hikima, S. Miyazaki, and S. Ide, Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachioki, Hokkaido, earthquake, Earth Planets Space, 56, 329–334, 2004.

    Article  Google Scholar 

  13. Lavallee, D. and R. J. Archuleta, Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake, Geophys. Res. Lett., 30(5), 1245, doi:10.1029/2002GL015839, 2003.

    Article  Google Scholar 

  14. Mai, P. M. and G. C. Beroza, Source scaling properties from finite-fault rupture models, Bull. Seismol. Soc. Am., 90, 604–615, 2000.

    Article  Google Scholar 

  15. Mai, P. M. and G. C. Beroza, A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res., 107(B11), 2308, doi:10.1029/2001JB000588, 2002.

    Article  Google Scholar 

  16. Mendoza, C. and E. Fukuyama, The July 12, 1993, Hokkaido Nansei- Oki, Japan, earthquake: Coseismic slip pattern from strong-motion and teleseismic recordings, J. Geophys. Res., 101, 791–801, 1996.

    Article  Google Scholar 

  17. Miyake, H., T. Iwata, and K. Irikura, Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area, Bull. Seismol. Soc. Am., 93, 2531–2545, 2003.

    Article  Google Scholar 

  18. Miyakoshi, K., Source characterization of heterogeneous source, Chikyu Monthly, Special Issue 37, 62–77, 2002 (in Japanese).

    Google Scholar 

  19. Nagai, R., M. Kikuchi, and Y. Yamanaka, Comparative study on the source processes of recurrent large earthquakes in Sanriku-oki region: the 1968 Tokachi-oki earthquake and the 1994 Sanriku-oki earthquake, Zisin, 54, 267–280, 2001 (in Japanese with English abstract).

    Google Scholar 

  20. Nakayama, W. and M. Takeo, Slip history of the 1994 Sanriku-Haruka- Oki, Japan, earthquake deduced from strong-motion data, Bull. Seismol. Soc. Am., 87, 918–931, 1997.

    Google Scholar 

  21. Okada, T., T. Matsuzawa, and A. Hasegawa, Comparison of source areas of M4.8±0.1 repeating earthquakes off Kamaishi, NE Japan: are asperities persistent features?, Earth Planet. Sci. Lett., 213, 361–374, 2003.

    Article  Google Scholar 

  22. Satake, K., Depth distribution of coseismic slip along the Nankai trough, Japan, from joint inversion of geodetic and tsunami data, J. Geophys. Res., 98, 4553–4565, 1993.

    Article  Google Scholar 

  23. Somerville, P. G., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada, Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seismol. Res. Lett., 70, 59–80, 1999.

    Article  Google Scholar 

  24. Somerville, P. G., T. Sato, T. Ishii, N. F. Collins, K. Dan, and H. Fujiwara, Characterizing heterogeneous slip models for large subduction earthquakes for strong ground motion prediction, Proc. 11th Japan Earthq. Eng. Symp., 163–166, 2002 (in Japanese with English abstract).

    Google Scholar 

  25. Tanioka, Y. and K. Satake, Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake, Earth Planets Space, 53, 235–241, 2001a.

    Article  Google Scholar 

  26. Tanioka, Y. and K. Satake, Detailed coseismic slip distribution of the 1944 Tonankai earthquake estimated from tsunami waveforms, Geophys. Res. Lett., 28, 1075–1078, 2001b.

    Article  Google Scholar 

  27. Tanioka, Y., K. Satake, and L. Ruff, Total analysis of the 1993 Hokkaido nansei-oki earthquake using seismic wave, tsunami, and geodetic data, Geophys. Res. Lett., 22, 9–12, 1995.

    Article  Google Scholar 

  28. Tanioka, Y., L. Ruff, and K. Satake, The Sanriku-oki, Japan, earthquake of December 28, 1994 (Mw 7.7): Rupture of a different asperity from a previous earthquake, Geophys. Res. Lett., 23, 1465–1468, 1996.

    Article  Google Scholar 

  29. Tanioka, Y., K. Hirata, R. Hino, and T. Kanazawa, Slip distribution of the 2003 Tokachi-oki earthquake estimated from tsunami waveform inversion, 2004, Earth Planets Space, 56, 372–376, 2004.

    Google Scholar 

  30. Wald, D. J. and P. G. Somerville, Variable-slip rupture model of the great 1923 Kanto, Japan, earthquake: Geodetic and body-waveform analysis, Bull. Seismol. Soc. Am., 85, 159–177, 1995.

    Google Scholar 

  31. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans. AGU, 76, 329, 1995.

    Article  Google Scholar 

  32. Yagi, Y., Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and ground motion data, Earth Planets Space, 56, 311–316, 2004.

    Article  Google Scholar 

  33. Yagi, Y., M. Kikuchi, S. Yoshida, and Y. Yamanaka, Source process of the Hyuga-nada earthquake of April 1, 1968 (MJMA 7.5), and its relationship to the subsequent seismicity, Zisin, 51, 139–148, 1998 (in Japanese with English abstract).

    Google Scholar 

  34. Yagi, Y., M. Kikuchi, S. Yoshida, and T. Sagiya, Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada earthquakes of 1996, Geophys. Res. Lett., 26, 3161–3164, 1999.

    Article  Google Scholar 

  35. Yamanaka, Y. and K. Shimazaki, Scaling relationship between the number of aftershocks and the size of the main shock, J. Phys. Earth, 38, 305–324, 1990.

    Article  Google Scholar 

  36. Yamanaka, Y. and M. Kikuchi, Source process of the recurrent Tokachioki earthquake on September 26, 2003, inferred from teleseismic body waves, Earth Planets Space, 55, e21–e24, 2003.

    Article  Google Scholar 

  37. Yamanaka, Y. and M. Kikuchi, Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109, B07307, doi:10.1029/2003JB002683, 2004.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murotani, S., Miyake, H. & Koketsu, K. Scaling of characterized slip models for plate-boundary earthquakes. Earth Planet Sp 60, 987–991 (2008). https://doi.org/10.1186/BF03352855

Download citation

Key words

  • Plate-boundary earthquake
  • asperity
  • source characterization
  • source inversion
  • source scaling