Skip to main content

Shock equation of state of basalt

Abstract

Detailed wave profiles for Kinosaki basalt at pressures up to 25 GPa are measured using a laser velocity interferometer in order to determine the dynamic properties. The results indicate a Hugoniot elastic limit of 2 GPa and a relationship between shock velocity (Us) and particle velocity (Up) approximated by Us (km/s) = 3.5 + 1.3Up (km/s) in the low-pressure plastic region (Up below 4 km/s). These data are compared with the known data for rocks with basaltic compositions, and tensile strength of the basaltic rocks was found to be about one tenth of that of compression strength.

References

  1. Ahrens, T. J. and V. G. Gregson, Shock compression of crustal rocks: data for quartz, calcite, and plagioclase rocks, J. Geophys. Res., 69, 4839–4874, 1964.

    Article  Google Scholar 

  2. Ai, H. A. and T. J. Ahrens, Dynamic tensile strength of terrestrial rocks and application to impact cratering, Meteor. Plan. Sci., 39, 233–246, 2004.

    Article  Google Scholar 

  3. Barker, L. M., The accuracy of VISAR instrumentation, Shock Comp. Cond. Matter-1997, 833–836, 1998.

    Google Scholar 

  4. Barker, L. M. and R. E. Hollenbach, Laser interfemometer for measuring high velocities of any reflecting surface, J. Appl. Phys., 43, 4669–4675, 1972.

    Article  Google Scholar 

  5. Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets, 1286 pp, Pergamon Press, New York, 1981.

    Google Scholar 

  6. Bolger, J. A., C. S. Montross, and A. V. Rode, Shock waves in basalt rock generated with high-powered lasers in a confined geometry, J. Appl. Phys., 86, 5461–5466, 1999.

    Article  Google Scholar 

  7. Cohn, S. N. and T. J. Ahrens, Dymanic tensile strength of lunar rock types, J. Geophys. Res., 86, 1794–1802, 1981.

    Article  Google Scholar 

  8. Genbudo Research Group, Geology and petrology of quaternary volcanic rocks from the Genbudo area, northern Hyogo prefecture, southwest Japan—Genbudo and Akaishi lavas—, Earth Sci., 45, 131–144, 1991 (in Japanese with English abstract).

    Google Scholar 

  9. Grady, D. E., Spall properties of Solenhofen limestone and Dresser basalt, Shock Comp. Cond. Matter-1999, 1255–1258, 2000.

    Google Scholar 

  10. Holmes, N. C. and E. F. See, Shock compression of low-density microcellular materials, Shock Comp. Cond. Matter-1991, 91–94, 1992.

    Google Scholar 

  11. Jones, A. H., W. M. Isabell, F. H. Shipman, R. D. Perkins, S. J. Green, and C. J. Maidon, Material properties measurements for selected materials, Inter. Rep. NAS2-3427, GE Tech. Center, Michigan, 1968.

    Google Scholar 

  12. Marsh, S. P., LASL Shock Hugoniot Data, University of California Press, 1980.

    Google Scholar 

  13. Meyers, M. A., Dynamic Behavior of Materials, 183 p, JohnWylie & Sons, New York, 1994.

    Google Scholar 

  14. Mizutani, H., Y. Takagi, and S. Kawakami, New scaling laws on impact fragmentation, Icarus, 87, 307–326, 1990.

    Article  Google Scholar 

  15. Nakazawa, S., S. Watanabe, M. Kato, Y. Iijima, T. Kobayashi, and T. Sekine, Hugoniot equation of state of basalt, Planet. Space Sci., 45, 1489–1492, 1997.

    Article  Google Scholar 

  16. Nakazawa, S., S. Watanabe, Y. Iijima, and M. Kato, Experimental investigation of shock wave attenuation in basalt, Icarus, 156, 539–550, 2002.

    Article  Google Scholar 

  17. Nikolaev, D. N., V. E. Fortov, A. S. Filimonov, S. V. Kvitov, and V. Ya. Ternovoi, SiO2-aerogel plasma properties in the energy range up to 65 kJ/g, Shock Comp. Cond. Matter-1999, 121–124, 2000.

    Google Scholar 

  18. Stewart, S. T., G. B. Kennedy, L. E. Senft, M. R. Furlanetto, A.W. Obst, J. R. Rayton, and A. Seifter, Post-shock temperature and free surface velocity measurements of basalt, Shock Comp. Cond. Matter-2005, 1484–1487, 2006.

    Google Scholar 

  19. Trunin, R. F., G. V. Simakov, I. P. Dudoladov, G. S. Telegin, and I. P. Trusov, Rock compressibility in shock waves, Izv. Earth Phys., 24, 38–42, 1988.

    Google Scholar 

  20. Van Thiel, M., Compendium of Shock Wave Data, UCRL-50108, Vol. 3, 721–725, 1977.

    Google Scholar 

  21. Zel’dovich, Y. B. and Y. P. Raizer, Physics of Shock Waves and High- Temperature Hydrodynamic Phenomena, 916 pp, Dover, New York, 2002.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshimori Sekine.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekine, T., Kobayashi, T., Nishio, M. et al. Shock equation of state of basalt. Earth Planet Sp 60, 999–1003 (2008). https://doi.org/10.1186/BF03352857

Download citation

Key words

  • Shock equation of state
  • basalt
  • dynamic behavior
  • Hugoniot
  • VISAR